代表(政治)
计算机科学
人工智能
政治学
法学
政治
作者
Gengchen Mai,Ziyuan Li,Ni Lao
出处
期刊:CRC Press eBooks
[Informa]
日期:2023-12-08
卷期号:: 99-120
被引量:3
标识
DOI:10.1201/9781003308423-6
摘要
Spatial representation learning (SRL) refers to a set of techniques that use deep neural networks (DNNs) to encode and featurize various types of spatial data in the forms of points, polylines, polygons, graphs, etc. In this chapter, we discuss the existing works, key challenges, and uniqueness of spatial representation learning on various types of spatial data. We argue that, as a subfield of spatially explicit artificial intelligence, SRL is a unique research topic that distinguishes GeoAI research and highlights the unique challenges of developing AI models for geospatial data.
科研通智能强力驱动
Strongly Powered by AbleSci AI