O’Hare Airport Short-Term Ground Transportation Modal Demand Forecast Using Gaussian Processes

TRIPS体系结构 地铁列车时刻表 运输工程 样品(材料) 计量经济学 计算机科学 异方差 航程(航空) 国际机场 运筹学 工程类 经济 化学 色谱法 航空航天工程 操作系统
作者
Natalia Zuniga-Garcia,Arindam Fadikar,Damola M. Akinlana,Joshua Auld
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:150 (3) 被引量:2
标识
DOI:10.1061/jtepbs.teeng-7918
摘要

The principal objective of this study is to analyze the spatial and temporal variation of ground transportation airport demand and provide demand forecast to inform planning capability and explore alternatives for investments to accommodate airport growth. Because of its good adaptability and strong generalization ability for dealing with high-dimensional input, small-sample, and nonlinear spatial data, Gaussian process (GP) regression is used to provide forecast estimates using data from transportation network company (TNC) trips and urban rail passengers at Chicago's O'Hare International Airport. TNC airport trips differ significantly, with three times more distance, more than twice the travel time, and half of the share requests compared with nonairport trips. This highlights the need for separate demand models. Hourly analysis of the rail service indicates that this is likely heavily used by airport workers, whereas TNC services focus on travelers because of variations in the peak demand hours. Heteroscedastic GP regression is implemented because of differences in trip variance between night and day hours. Estimates are given for weekdays and weekend trips, and the 95% confidence intervals are calculated. The introduction of flight schedule information into the models shows marginal improvements in their performance. However, fitting a GP regression becomes computationally expensive with increased sample size and the introduction of spatial components. Transportation planners and policymakers can use the results and methods implemented in this study to optimize transportation assets and provide long-range simulations of the current and future conditions in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
非而者厚应助柠檬不爱橘采纳,获得10
1秒前
2秒前
Luna发布了新的文献求助10
2秒前
kid1412完成签到 ,获得积分10
3秒前
sushx完成签到,获得积分10
6秒前
deng203发布了新的文献求助10
7秒前
哈哈哈完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
今后应助自信的雪糕采纳,获得10
11秒前
12秒前
单薄松鼠完成签到 ,获得积分10
13秒前
13秒前
14秒前
隐形曼青应助是我呀小夏采纳,获得10
14秒前
冰魂应助认真柠檬采纳,获得10
14秒前
十一玮完成签到,获得积分10
14秒前
小医僧发布了新的文献求助10
15秒前
bym发布了新的文献求助10
15秒前
汉堡包应助懦弱的龙猫采纳,获得30
15秒前
海鲜发布了新的文献求助10
16秒前
hoongyan完成签到 ,获得积分10
16秒前
我不到啊完成签到,获得积分10
16秒前
16秒前
17秒前
搜集达人应助黄徐采纳,获得10
17秒前
JamesPei应助彭嬇采纳,获得10
18秒前
honoruru完成签到,获得积分10
18秒前
upupup111完成签到,获得积分10
18秒前
shimhjy应助咖啡豆采纳,获得10
18秒前
暗中观察完成签到,获得积分10
19秒前
19秒前
20秒前
在水一方应助天天采纳,获得10
20秒前
JamesPei应助天天采纳,获得10
20秒前
SYLH应助756333725采纳,获得10
20秒前
20秒前
cdercder应助可口可乐采纳,获得10
21秒前
hi派大星发布了新的文献求助10
21秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801265
求助须知:如何正确求助?哪些是违规求助? 3346952
关于积分的说明 10331093
捐赠科研通 3063252
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763785