亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning RNA sequence patterns to interpretably identify m6A modification sites

计算生物学 核糖核酸 鉴定(生物学) 序列(生物学) 计算机科学 人工智能 生物 基因 遗传学 植物
作者
Guodong Li,Bo-Wei Zhao,Xiaorui Su,Ya-Ting Carolyn Yang,Pengwei Hu,Lun Hu
标识
DOI:10.1109/bibm58861.2023.10386062
摘要

N6-methyladenosine (m6A) regulates RNA post-transcriptional modification and translation processes, thereby regulating gene expression and cell fate. Hence, accurate identification of potential m6A modification sites is a key step to further reveal their biological functions and understand multiple biological processes such as gene regulation and epigenetic variation. Many computational methods have been developed to address this challenge. However, fewer studies have focused on an interpretable process of m6A modification site identification. Here, we propose an interpretable end-to-end predictor, called M6AInter, which learns the RNA sequence patterns related to modification sites through contrastive learning frameworks to achieve accurate identification of m6A modification sites. Specifically, M6AInter first utilizes chaos game representation theory and one-hot encoding to initialize the position and type information of nucleotides, respectively. On this basis, M6AInter extracts the position and type correlations shared by RNA sequences, and predicts the common sequence patterns by utilizing a graph contrastive clustering framework. These motifs and patterns are involved in describing the associations between RNA sequences and obtaining their low-dimensional representations. Finally, through a designed bias fusion block, these representations are combined with the frequency information of nucleotides to realize the identification of m6A modification sites. Extensive experimental results show that our model can accurately identify modified RNA sequences and can adaptively locate sequential regions associated with m6A modification sites on RNA sequences. Importantly, by exploring the role of these patterns in the identification tasks, M6AInter provides interpretable predictions and analysis at the sequence level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
羞涩的傲菡完成签到,获得积分10
20秒前
可耐的冰萍完成签到,获得积分10
21秒前
Dravia完成签到,获得积分10
22秒前
MchemG给年糕的求助进行了留言
27秒前
50秒前
57秒前
菜yoyo完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
ktw完成签到,获得积分10
1分钟前
CodeCraft应助Jero采纳,获得10
2分钟前
糖伯虎完成签到 ,获得积分10
2分钟前
Raunio完成签到,获得积分10
2分钟前
2分钟前
Jero发布了新的文献求助10
2分钟前
2分钟前
MchemG应助车哥爱学习采纳,获得10
2分钟前
奋斗雅香完成签到 ,获得积分10
2分钟前
Akim应助啊哦额采纳,获得10
2分钟前
MchemG完成签到,获得积分0
2分钟前
大个应助wao采纳,获得30
2分钟前
Ava应助小杰杰采纳,获得10
3分钟前
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
bkagyin应助科研通管家采纳,获得20
3分钟前
3分钟前
4分钟前
小杰杰完成签到,获得积分10
4分钟前
小杰杰发布了新的文献求助10
4分钟前
4分钟前
rodrisk完成签到 ,获得积分10
4分钟前
菜yoyo发布了新的文献求助10
4分钟前
4分钟前
Docgyj完成签到 ,获得积分0
5分钟前
5分钟前
5分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060942
求助须知:如何正确求助?哪些是违规求助? 3599448
关于积分的说明 11432174
捐赠科研通 3323477
什么是DOI,文献DOI怎么找? 1827290
邀请新用户注册赠送积分活动 897914
科研通“疑难数据库(出版商)”最低求助积分说明 818699