SGLMDA: A Subgraph Learning-based Method for miRNA-disease Association Prediction

水准点(测量) 疾病 计算机科学 小RNA 计算生物学 机器学习 人工智能 生物 基因 遗传学 医学 地图学 地理 病理
作者
Cunmei Ji,Ning Yu,Yutian Wang,Jiancheng Ni,Chun-Hou Zheng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1191-1201
标识
DOI:10.1109/tcbb.2024.3373772
摘要

MicroRNAs (miRNA) are endogenous non-coding RNAs, typically around 23 nucleotides in length. Many miRNAs have been founded to play crucial roles in gene regulation though post-transcriptional repression in animals. Existing studies suggest that the dysregulation of miRNA is closely associated with many human diseases. Discovering novel associations between miRNAs and diseases is essential for advancing our understanding of disease pathogenesis at molecular level. However, experimental validation is time-consuming and expensive. To address this challenge, numerous computational methods have been proposed for predicting miRNA-disease associations. Unfortunately, most existing methods face difficulties when applied to large-scale miRNA-disease complex networks. In this paper, we present a novel subgraph learning method named SGLMDA for predicting miRNA-disease associations. For miRNA-disease pairs, SGLMDA samples $K$ -hop subgraphs from the global heterogeneous miRNA-disease graph. It then introduces a novel subgraph representation algorithm based on Graph Neural Network (GNN) for feature extraction and prediction. Extensive experiments conducted on benchmark datasets demonstrate that SGLMDA can effectively and robustly predict potential miRNA-disease associations. Compared to other state-of-the-art methods, SGLMDA achieves superior prediction performance in terms of Area Under the Curve (AUC) and Average Precision (AP) values during 5-fold Cross-Validation (5CV) on benchmark datasets such as HMDD v2.0 and HMDD v3.2. Additionally, case studies on Colon Neoplasms and Triple-Negative Breast Cancer (TNBC) further underscore the predictive power of SGLMDA. The dataset and source code of SGLMDA are available at https://github.com/cunmeiji/SGLMDA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木发布了新的文献求助10
1秒前
cylee发布了新的文献求助10
1秒前
汉堡包应助lihua采纳,获得10
1秒前
1秒前
piggip完成签到,获得积分10
1秒前
JamesPei应助静好采纳,获得10
2秒前
852应助guojia采纳,获得10
2秒前
hanzhipad举报高兴金毛求助涉嫌违规
3秒前
宋鸣鸣完成签到,获得积分20
3秒前
林剑立完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
才啊驳回了冰魂应助
5秒前
pyt完成签到,获得积分20
6秒前
我要摆烂儿完成签到,获得积分10
6秒前
宋鸣鸣发布了新的文献求助20
6秒前
yyy完成签到,获得积分10
7秒前
7秒前
7秒前
爱笑笑发布了新的文献求助10
8秒前
Wy21发布了新的文献求助10
8秒前
zheweitang完成签到,获得积分10
8秒前
沐星发布了新的文献求助10
8秒前
自然垣发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
小林不熬夜完成签到,获得积分10
11秒前
Diamond发布了新的文献求助10
11秒前
hobowei发布了新的文献求助10
11秒前
啦啦啦完成签到 ,获得积分10
11秒前
星辰完成签到,获得积分10
12秒前
ding应助Demons采纳,获得10
13秒前
夏东方发布了新的文献求助10
13秒前
cookie完成签到,获得积分10
14秒前
33l完成签到,获得积分10
14秒前
科研小白发布了新的文献求助10
14秒前
hygge869完成签到,获得积分10
15秒前
15秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821205
求助须知:如何正确求助?哪些是违规求助? 3363983
关于积分的说明 10426773
捐赠科研通 3082464
什么是DOI,文献DOI怎么找? 1695639
邀请新用户注册赠送积分活动 815196
科研通“疑难数据库(出版商)”最低求助积分说明 769046