亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluating Outcome Prediction via Baseline, End-of-Treatment, and Delta Radiomics on PET-CT Images of Primary Mediastinal Large B-Cell Lymphoma

医学 无线电技术 核医学 标准摄取值 特征选择 放射科 无进展生存期 正电子发射断层摄影术 化疗 人工智能 内科学 计算机科学
作者
Fereshteh Yousefirizi,Claire Gowdy,Ivan S. Klyuzhin,Maziar Sabouri,R. Petter Tonseth,Anna Hayden,Donald Wilson,Laurie H. Sehn,David W. Scott,Christian Steidl,Kerry J. Savage,Carlos Uribe,Arman Rahmim
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:16 (6): 1090-1090 被引量:12
标识
DOI:10.3390/cancers16061090
摘要

Objectives: Accurate outcome prediction is important for making informed clinical decisions in cancer treatment. In this study, we assessed the feasibility of using changes in radiomic features over time (Delta radiomics: absolute and relative) following chemotherapy, to predict relapse/progression and time to progression (TTP) of primary mediastinal large B-cell lymphoma (PMBCL) patients. Material and Methods: Given the lack of standard staging PET scans until 2011, only 31 out of 103 PMBCL patients in our retrospective study had both pre-treatment and end-of-treatment (EoT) scans. Consequently, our radiomics analysis focused on these 31 patients who underwent [18F]FDG PET-CT scans before and after R-CHOP chemotherapy. Expert manual lesion segmentation was conducted on their scans for delta radiomics analysis, along with an additional 19 EoT scans, totaling 50 segmented scans for single time point analysis. Radiomics features (on PET and CT), along with maximum and mean standardized uptake values (SUVmax and SUVmean), total metabolic tumor volume (TMTV), tumor dissemination (Dmax), total lesion glycolysis (TLG), and the area under the curve of cumulative standardized uptake value-volume histogram (AUC-CSH) were calculated. We additionally applied longitudinal analysis using radial mean intensity (RIM) changes. For prediction of relapse/progression, we utilized the individual coefficient approximation for risk estimation (ICARE) and machine learning (ML) techniques (K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Random Forest (RF)) including sequential feature selection (SFS) following correlation analysis for feature selection. For TTP, ICARE and CoxNet approaches were utilized. In all models, we used nested cross-validation (CV) (with 10 outer folds and 5 repetitions, along with 5 inner folds and 20 repetitions) after balancing the dataset using Synthetic Minority Oversampling TEchnique (SMOTE). Results: To predict relapse/progression using Delta radiomics between the baseline (staging) and EoT scans, the best performances in terms of accuracy and F1 score (F1 score is the harmonic mean of precision and recall, where precision is the ratio of true positives to the sum of true positives and false positives, and recall is the ratio of true positives to the sum of true positives and false negatives) were achieved with ICARE (accuracy = 0.81 ± 0.15, F1 = 0.77 ± 0.18), RF (accuracy = 0.89 ± 0.04, F1 = 0.87 ± 0.04), and LDA (accuracy = 0.89 ± 0.03, F1 = 0.89 ± 0.03), that are higher compared to the predictive power achieved by using only EoT radiomics features. For the second category of our analysis, TTP prediction, the best performer was CoxNet (LASSO feature selection) with c-index = 0.67 ± 0.06 when using baseline + Delta features (inclusion of both baseline and Delta features). The TTP results via Delta radiomics were comparable to the use of radiomics features extracted from EoT scans for TTP analysis (c-index = 0.68 ± 0.09) using CoxNet (with SFS). The performance of Deauville Score (DS) for TTP was c-index = 0.66 ± 0.09 for n = 50 and 0.67 ± 03 for n = 31 cases when using EoT scans with no significant differences compared to the radiomics signature from either EoT scans or baseline + Delta features (p-value> 0.05). Conclusion: This work demonstrates the potential of Delta radiomics and the importance of using EoT scans to predict progression and TTP from PMBCL [18F]FDG PET-CT scans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
HuaqingLiu发布了新的文献求助10
17秒前
17秒前
savagecas完成签到,获得积分20
21秒前
lmj完成签到,获得积分10
23秒前
25秒前
27秒前
HuaqingLiu完成签到,获得积分10
29秒前
沙代云发布了新的文献求助10
32秒前
lmj发布了新的文献求助30
41秒前
寂寞致幻完成签到,获得积分10
42秒前
耳鼻喉不发言完成签到,获得积分10
43秒前
44秒前
文献搬运工完成签到 ,获得积分10
1分钟前
1分钟前
zhangxiaopan应助科研通管家采纳,获得10
1分钟前
鳄鱼不做饿梦完成签到,获得积分10
2分钟前
jobs发布了新的文献求助20
2分钟前
负责的紫安完成签到 ,获得积分10
2分钟前
英俊的铭应助jobs采纳,获得10
2分钟前
2分钟前
qingshu发布了新的文献求助10
3分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
zhangxiaopan应助科研通管家采纳,获得10
3分钟前
kmzzy完成签到,获得积分10
3分钟前
3分钟前
3分钟前
妃子笑发布了新的文献求助10
3分钟前
妃子笑完成签到,获得积分10
3分钟前
4分钟前
KeYXB完成签到,获得积分10
4分钟前
4分钟前
Jasper应助qingshu采纳,获得10
4分钟前
4分钟前
楠楠完成签到 ,获得积分10
5分钟前
5分钟前
Jessica应助科研通管家采纳,获得10
5分钟前
5分钟前
rodrisk完成签到 ,获得积分10
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
MRI Parameters and Positioning 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4155746
求助须知:如何正确求助?哪些是违规求助? 3691431
关于积分的说明 11658766
捐赠科研通 3383109
什么是DOI,文献DOI怎么找? 1856333
邀请新用户注册赠送积分活动 917809
科研通“疑难数据库(出版商)”最低求助积分说明 831135