YOLO-Submarine Cable: An Improved YOLO-V3 Network for Object Detection on Submarine Cable Images

潜艇 水下 计算机科学 职位(财务) 海洋工程 人工智能 实时计算 计算机视觉 工程类 地质学 财务 海洋学 经济
作者
Yue Li,Xueting Zhang,Zhangyi Shen
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:10 (8): 1143-1143 被引量:19
标识
DOI:10.3390/jmse10081143
摘要

Due to the strain on land resources, marine energy development is expanding, in which the submarine cable occupies an important position. Therefore, periodic inspections of submarine cables are required. Submarine cable inspection is typically performed using underwater vehicles equipped with cameras. However, the motion of the underwater vehicle body, the dim light underwater, and the property of light propagation in water lead to problems such as the blurring of submarine cable images, the lack of information on the position and characteristics of the submarine cable, and the blue–green color of the images. Furthermore, the submarine cable occupies a significant portion of the image as a linear entity. In this paper, we propose an improved YOLO-SC (YOLO-Submarine Cable) detection method based on the YOLO-V3 algorithm, build a testing environment for submarine cables, and create a submarine cable image dataset. The YOLO-SC network adds skip connections to feature extraction to make the position information of submarine cables more accurate, a top-down downsampling structure in multi-scale special fusion to reduce the network computation and broaden the network perceptual field, and lightweight processing in the prediction network to accelerate the network detection. Under laboratory conditions, we illustrate the effectiveness of these modifications through ablation studies. Compared to other algorithms, the average detection accuracy of the YOLO-SC model is increased by up to 4.2%, and the average detection speed is decreased by up to 1.616 s. The experiments demonstrate that the YOLO-SC model proposed in this paper has a positive impact on the detection of submarine cables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安安完成签到,获得积分10
刚刚
不安便当发布了新的文献求助10
1秒前
1秒前
YHX完成签到,获得积分10
1秒前
1秒前
yohana完成签到 ,获得积分10
2秒前
桔梗完成签到,获得积分10
2秒前
大吴克发布了新的文献求助10
3秒前
duoduozs完成签到,获得积分10
3秒前
能干的邹完成签到,获得积分10
3秒前
wanci应助puzhongjiMiQ采纳,获得10
4秒前
热情的幻丝完成签到,获得积分10
4秒前
恸哭的千鸟完成签到,获得积分10
5秒前
小石头完成签到,获得积分10
5秒前
kdkddk完成签到,获得积分10
6秒前
忐忑的草丛完成签到,获得积分10
6秒前
风之飘渺者也完成签到,获得积分10
6秒前
wangjing11完成签到,获得积分10
6秒前
6秒前
嵇耷发布了新的文献求助10
7秒前
在水一方应助之星君采纳,获得10
7秒前
MUWENYING完成签到,获得积分20
7秒前
JamesPei应助....采纳,获得10
8秒前
三三完成签到,获得积分10
9秒前
贝湾完成签到,获得积分10
9秒前
SciGPT应助不要长胖采纳,获得30
11秒前
无花果应助无辜的笙采纳,获得10
11秒前
11秒前
小二郎应助claire采纳,获得10
11秒前
HEIKU应助林狗采纳,获得10
12秒前
xdy完成签到 ,获得积分10
12秒前
popo6150完成签到,获得积分10
12秒前
joy完成签到,获得积分10
12秒前
seedcode完成签到,获得积分10
12秒前
科研同路人完成签到,获得积分0
12秒前
Tomin完成签到,获得积分10
13秒前
ABin完成签到,获得积分10
13秒前
勤恳的书雪完成签到,获得积分10
14秒前
彭于晏应助大狒狒采纳,获得30
15秒前
Canda完成签到 ,获得积分10
15秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827509
求助须知:如何正确求助?哪些是违规求助? 3369757
关于积分的说明 10457657
捐赠科研通 3089465
什么是DOI,文献DOI怎么找? 1699897
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263