Fast and non-destructive discriminating the geographical origin of Hangbaiju by hyperspectral imaging combined with chemometrics

高光谱成像 化学计量学 模式识别(心理学) 人工智能 遥感 计算机科学 地理 机器学习
作者
Wanjun Long,Qi Zhang,Sirui Wang,Yixin Suo,Hengye Chen,Xiuyun Bai,Xiaolong Yang,Yanping Zhou,Jian Yang,Haiyan Fu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:284: 121786-121786 被引量:36
标识
DOI:10.1016/j.saa.2022.121786
摘要

Hangbaiju is highly appreciated flower tea for its health benefits, and its quality and price are affected by geographical origin. Fast and accurate identification of the geographical origin of Hangbaiju is very significant for producers, consumers and market regulators. In this work, hyperspectral imaging combined with chemometrics, was used, for the first time, to explore and implement the geographical origin classification of Hangbaiju. The hyperspectral images in the spectral range of 410-2500 nm for 75 samples of five different origins were collected. As a versatile chemometrics tool, bagging classification tree-radial basis function (BAGCT-RBFN), compared with classification tree (CT), radial basis function network (RBFN), was applied to discriminate Hangbaiju samples from different origins. The results showed that BAGCT-RBFN based on optimal wavelengths yielded superior classification performances to CT and RBFN with full wavelengths. The recognition rates (RR) of the training and prediction sets by BAGCT-RBFN were 96.0 % and 92.0 %, respectively. Hyperspectral imaging combined with chemometric can be considered as a powerful, feasible and convenient tool for the classification of Hangbaiju samples from different origins. It promises to be a potential way for origin discriminant analysis and quality monitor in food fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助111117采纳,获得10
刚刚
冷笑完成签到,获得积分10
1秒前
2秒前
无极微光应助半岛采纳,获得20
2秒前
nature2号发布了新的文献求助10
2秒前
2秒前
研友_8yPrqZ完成签到,获得积分10
2秒前
冷酷的柚子完成签到,获得积分10
3秒前
3秒前
3秒前
洋洋羊发布了新的文献求助10
3秒前
共享精神应助Milder采纳,获得10
4秒前
4秒前
炙热沂完成签到,获得积分10
4秒前
4秒前
慕青应助南北采纳,获得10
4秒前
吴未发布了新的文献求助10
5秒前
我是老大应助PatrickWu采纳,获得20
6秒前
ding应助你好采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
YOOO完成签到,获得积分10
8秒前
blablawindy发布了新的文献求助10
9秒前
潇潇暮雨完成签到,获得积分10
10秒前
10秒前
万能图书馆应助团结友爱采纳,获得10
11秒前
木冉完成签到 ,获得积分10
11秒前
11秒前
罐装冰块完成签到,获得积分10
11秒前
乐乐应助洁净的士晋采纳,获得10
12秒前
我是老大应助魔幻雨梅采纳,获得10
12秒前
糕糕发布了新的文献求助10
12秒前
12秒前
12秒前
科研通AI6.1应助goooood采纳,获得10
12秒前
无花果应助无敌肥包包采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750918
求助须知:如何正确求助?哪些是违规求助? 5466503
关于积分的说明 15368457
捐赠科研通 4890153
什么是DOI,文献DOI怎么找? 2629530
邀请新用户注册赠送积分活动 1577791
关于科研通互助平台的介绍 1534079