MFIALane: Multiscale Feature Information Aggregator Network for Lane Detection

新闻聚合器 计算机科学 分割 特征(语言学) 特征提取 人工智能 目标检测 光学(聚焦) 频道(广播) 数据挖掘 语义学(计算机科学) 模式识别(心理学) 操作系统 光学 物理 哲学 语言学 程序设计语言 计算机网络
作者
Zengyu Qiu,Jing Zhao,Shiliang Sun
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24263-24275 被引量:11
标识
DOI:10.1109/tits.2022.3195742
摘要

Lane detection differs from general object detection in that lane lines are usually long and narrow in the road image, and more attention to image features at different scales is required to reason about lane lines under occlusion, degradation, and bad weather. However, most existing semantic segmentation-based lane detection methods focus on solving the convolutional receptive field through aggregating information vertically and horizontally in the same feature map, which may ignore important information contained in multi-scale features. Besides, the high-level semantic information of whether the lane exists is not fully utilized, as they often add a module at the final stage of the network output to determine whether the lane exists, which is a dispensable for their network. Based on the above analysis, we design a novel lane detection network based on semantic segmentation which consists of a Multi-scale Feature Information Aggregator (MFIA) module and a Channel Attention (CA) module. Many experiments on the TRLane dataset, the generated Lane dataset, BDD100K dataset, TuSimple dataset, VIL-100 dataset and CULane dataset show that our approach can achieve the state-of-the-art performance (our code will be available at https://github.com/Cuibaby/MFIALane ). In addition, considering that different perceptual tasks in autonomous driving are able to share the feature extraction network, we also conduct the experiment for drivable area segmentation on BDD100K dataset. Our approach also achieves good results compared to many existing methods, showing that our proposed model is capable of simultaneously handling multiple perceptual tasks in autonomous driving scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skbkbe完成签到 ,获得积分10
1秒前
123456完成签到,获得积分10
2秒前
月光完成签到 ,获得积分10
3秒前
开心的花卷完成签到,获得积分20
3秒前
3秒前
4秒前
5秒前
5秒前
科研通AI2S应助Linng采纳,获得10
8秒前
Aran_Zhang应助愤怒的大蒜采纳,获得10
9秒前
yyq完成签到,获得积分10
9秒前
fashion发布了新的文献求助10
10秒前
purplelove完成签到 ,获得积分10
10秒前
xiaxia发布了新的文献求助10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
桐桐应助弱势主义接班人采纳,获得10
13秒前
15秒前
AdnanKhan发布了新的文献求助10
17秒前
Glitter发布了新的文献求助10
18秒前
有缘人完成签到,获得积分10
18秒前
大馍发布了新的文献求助10
20秒前
22秒前
科研通AI5应助欧阳正义采纳,获得10
22秒前
华仔应助77采纳,获得10
23秒前
25秒前
大馍完成签到,获得积分10
26秒前
情怀应助柠檬要加冰采纳,获得10
26秒前
27秒前
27秒前
28秒前
脑洞疼应助momo采纳,获得10
29秒前
29秒前
30秒前
黄迪迪完成签到,获得积分10
30秒前
弱势主义接班人完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
诚心梦之完成签到,获得积分10
31秒前
jummy完成签到 ,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864651
求助须知:如何正确求助?哪些是违规求助? 3407124
关于积分的说明 10652620
捐赠科研通 3131082
什么是DOI,文献DOI怎么找? 1726801
邀请新用户注册赠送积分活动 832003
科研通“疑难数据库(出版商)”最低求助积分说明 780104