Effects of twin orientation and twin boundary spacing on the plastic deformation behaviors in Ni nanowires

材料科学 纳米线 晶体孪晶 变形(气象学) 方向(向量空间) 复合材料 几何学 微观结构 纳米技术 数学
作者
Ying Zhang,Yuxuan Hou,Zheng He,Ligong Zhao,Shuangfeng Jia,Kaixuan Li,Huayu Peng,Peili Zhao,Lei Li,Weiwei Meng,Renhui Jiang,Jianbo Wang
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:135: 231-240 被引量:16
标识
DOI:10.1016/j.jmst.2022.06.049
摘要

Spreading twins throughout nano metals has been proved to effectively mediate the mechanical behaviors in face-centered-cubic (fcc) metals. However, the experimental investigation concerning the roles of twin boundary (TB) during deformation is rarely reported. Here, with the joint efforts of in-situ nanomechanical testing and theoretical studies, we provide a systematic investigation regarding the effects of TB orientation (θ, the angle between tensile loading direction and the normal of TB) and spacing on deformation mechanisms in Ni nanowires (NWs). As compared with single-crystalline counterparts, it is found that nano-twinned (nt) NWs with θ ∼0° exhibit limited ductility, whereas TB can serve as an effective blockage to the dislocation propagation. In contrast, in nt NWs with θ ∼20° and 55°, TB migration/detwinning induced by TB-dislocation reaction or partial dislocation movement dominates the plasticity, which contributes to enhanced NW ductility. Regarding nt NWs with θ ∼90°, dislocations are found to be able to transmit through the TBs, suggesting the limited effect of TB on the NW stretchability. Furthermore, decreasing TB spacing (λ) can facilitate the detwinning process and thus greatly enhance the ductility of NW with θ ∼55°. This study uncovers the distinct roles that TB can play during mechanical deformations in fcc NWs and provides an atomistic view into the direct linkage between macroscopic mechanical properties and microscopic deformation modes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TY完成签到,获得积分10
2秒前
HJJHJH发布了新的文献求助10
3秒前
奶黄包发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
腾腾发布了新的文献求助10
4秒前
4秒前
王京发布了新的文献求助10
4秒前
zz发布了新的文献求助10
4秒前
姚钱树完成签到,获得积分10
5秒前
6秒前
suhua完成签到,获得积分10
6秒前
6秒前
7秒前
刘刘刘完成签到,获得积分10
7秒前
9秒前
suhua发布了新的文献求助10
9秒前
小致完成签到 ,获得积分10
9秒前
初秋发布了新的文献求助10
9秒前
所所应助呆萌初南采纳,获得10
9秒前
10秒前
情怀应助蓦然采纳,获得10
11秒前
12秒前
zz关闭了zz文献求助
12秒前
13秒前
13秒前
丘比特应助淡定的美女采纳,获得10
14秒前
英姑应助HJJHJH采纳,获得10
14秒前
俭朴听南发布了新的文献求助10
15秒前
高挑的寒松完成签到,获得积分10
15秒前
黄先生发布了新的文献求助10
15秒前
16秒前
16秒前
完美世界应助王京采纳,获得10
17秒前
18秒前
凡华完成签到,获得积分10
19秒前
zxm完成签到,获得积分10
20秒前
健忘的荔枝完成签到,获得积分10
20秒前
风中采枫完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642354
求助须知:如何正确求助?哪些是违规求助? 4758746
关于积分的说明 15017371
捐赠科研通 4801005
什么是DOI,文献DOI怎么找? 2566290
邀请新用户注册赠送积分活动 1524440
关于科研通互助平台的介绍 1483953