材料科学
纳米线
晶体孪晶
变形(气象学)
方向(向量空间)
复合材料
几何学
微观结构
纳米技术
数学
作者
Ying Zhang,Yuxuan Hou,Zheng He,Ligong Zhao,Shuangfeng Jia,Kaixuan Li,Huayu Peng,Peili Zhao,Lei Li,Weiwei Meng,Renhui Jiang,Jianbo Wang
标识
DOI:10.1016/j.jmst.2022.06.049
摘要
Spreading twins throughout nano metals has been proved to effectively mediate the mechanical behaviors in face-centered-cubic (fcc) metals. However, the experimental investigation concerning the roles of twin boundary (TB) during deformation is rarely reported. Here, with the joint efforts of in-situ nanomechanical testing and theoretical studies, we provide a systematic investigation regarding the effects of TB orientation (θ, the angle between tensile loading direction and the normal of TB) and spacing on deformation mechanisms in Ni nanowires (NWs). As compared with single-crystalline counterparts, it is found that nano-twinned (nt) NWs with θ ∼0° exhibit limited ductility, whereas TB can serve as an effective blockage to the dislocation propagation. In contrast, in nt NWs with θ ∼20° and 55°, TB migration/detwinning induced by TB-dislocation reaction or partial dislocation movement dominates the plasticity, which contributes to enhanced NW ductility. Regarding nt NWs with θ ∼90°, dislocations are found to be able to transmit through the TBs, suggesting the limited effect of TB on the NW stretchability. Furthermore, decreasing TB spacing (λ) can facilitate the detwinning process and thus greatly enhance the ductility of NW with θ ∼55°. This study uncovers the distinct roles that TB can play during mechanical deformations in fcc NWs and provides an atomistic view into the direct linkage between macroscopic mechanical properties and microscopic deformation modes.
科研通智能强力驱动
Strongly Powered by AbleSci AI