A hybrid model of neural network with VMD–CNN–GRU for traffic flow prediction

计算机科学 流量(计算机网络) 卷积神经网络 噪音(视频) 可预测性 可靠性(半导体) 流量(数学) 人工智能 深度学习 时间序列 人工神经网络 交通噪声 数据挖掘 算法 机器学习 降噪 数学 物理 功率(物理) 统计 几何学 计算机安全 量子力学 图像(数学)
作者
Xiaoting Huang,Changxi Ma,Yongpeng Zhao,Ke Wang,Wei Meng
出处
期刊:International Journal of Modern Physics C [World Scientific]
卷期号:34 (12) 被引量:11
标识
DOI:10.1142/s0129183123501590
摘要

An effective traffic flow prediction can serve as a foundation for control decisions on intelligent transportation. However, in view of the nonstationarity and complexity of traffic flow sequences, it is impossible to fully extract the dynamic change laws of time-series based on traditional forecasting models. Traffic flow data are often disturbed by noise during the collection. The existence of noise data may affect the features of the sequence itself or cover the real change trend of the series, resulting in the decline of prediction reliability. A hybrid prediction model based on variational mode decomposition–convolutional neural network–gated recurrent unit (VMD–CNN–GRU) is presented to increase the predictability of traffic flow, which is combined by VMD, CNN and GRU. First, the original time-series is decomposed into K components by VMD, and the noise part is eliminated to improve the modeling accuracy. Next, the time characteristics of traffic flow are mined by constructing the CNN–GRU network in Keras, a deep learning framework. Each sub-sequence is trained and predicted separately as an input vector. The total expected value of traffic flow is then calculated by superimposing the predicted value of each subsequence. The model performance is verified by the open-source dataset of actual England highways. The results show that compared with other models, the hybrid model established in this paper significantly raises the precision of traffic flow forecasting. The results could offer some useful insights for predicting traffic flow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翎儿响叮当完成签到 ,获得积分10
1秒前
2秒前
科研通AI5应助蔚蓝天空采纳,获得10
3秒前
3秒前
马库拉格发布了新的文献求助10
4秒前
4秒前
4秒前
李健的小迷弟应助未来采纳,获得10
5秒前
feishxixi完成签到,获得积分10
5秒前
科研通AI5应助1233333采纳,获得10
6秒前
一区top发布了新的文献求助10
7秒前
健壮书包完成签到,获得积分10
7秒前
实验大牛完成签到,获得积分10
7秒前
甜心肖宝发布了新的文献求助10
8秒前
幸福的小面包完成签到,获得积分10
8秒前
昨夜风宸发布了新的文献求助10
8秒前
decademe发布了新的文献求助10
9秒前
9秒前
汉堡包应助HY采纳,获得10
10秒前
打打应助Eason采纳,获得10
10秒前
茉莉发布了新的文献求助30
10秒前
11秒前
涛哥完成签到,获得积分10
11秒前
研友_Z1xNWn发布了新的文献求助20
12秒前
12秒前
研友_xLOMQZ完成签到,获得积分10
13秒前
累啊发布了新的文献求助10
13秒前
怕孤独的代亦关注了科研通微信公众号
14秒前
wxy发布了新的文献求助10
14秒前
空隙完成签到,获得积分10
15秒前
天天快乐应助糊涂的MJ采纳,获得10
16秒前
852应助1111采纳,获得10
17秒前
YUNJIE发布了新的文献求助10
17秒前
surge发布了新的文献求助10
18秒前
19秒前
19秒前
Zhy完成签到,获得积分10
19秒前
20秒前
尛瞐慶成发布了新的文献求助20
21秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761