Self-Adaptive Sampling Based Per-Flow Traffic Measurement

计算机科学 采样(信号处理) 估计员 实时计算 炸薯条 互联网流量 吞吐量 流量(数学) 互联网 电信 统计 无线 几何学 数学 探测器 万维网
作者
Yang Du,He Huang,Yu-E Sun,Shigang Chen,Guoju Gao,Xiaocan Wu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (3): 1010-1025 被引量:6
标识
DOI:10.1109/tnet.2022.3212066
摘要

Per-flow traffic measurement in the high-speed network plays an important role in many practical applications. Due to the limited on-chip memory and the mismatch between off-chip memory speed and line rate, sampling-based methods select and forward a part of flow traffic to off-chip memory, which complements sketch-based solutions in estimation accuracy and online query support. However, most current work uses the same sampling probability for all flows, leading to the waste in storage and communication resources. In practice, different flows often require different sampling rates to meet the same accuracy constraint. This paper presents self-adaptive sampling, a framework to sample each flow with a probability adapted to flow size/spread. Then we propose three algorithms, SAS-LC, SAS-LOG, and SAS-HYB. SAS-LC and SAS-LOG are geared towards per-flow spread estimation and per-flow size estimation by using different compression functions. SAS-HYB combines the advantages of SAS-LC and SAS-LOG, showing higher efficiency when both small flows and large flows are interested. We implement our estimators in hardware using NetFPGA. Experimental results based on real Internet traces show that, compared to the state-of-the-art in per-flow spread estimation, SAS-LC can save around 10% on-chip space and reduce up to 40% communication cost for large flows. In per-flow size estimation, SAS-LOG can save 40% on-chip space and reduce up to 96% communication costs for large flows. Moreover, SAS-HYB's on-chip memory usage will not be larger than SAS-LC or SAS-LOG and can save up to 19% on-chip space than SAS-LOG when both small flows and large flows are interested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
kg5g完成签到,获得积分10
1秒前
HR112发布了新的文献求助10
2秒前
wmy2333完成签到,获得积分20
3秒前
3秒前
悠悠球完成签到,获得积分10
4秒前
QQ发布了新的文献求助10
4秒前
伶俐的凉面应助cx采纳,获得10
5秒前
5秒前
5秒前
温柔的跳跳糖完成签到,获得积分10
6秒前
KON完成签到,获得积分10
6秒前
疯丫头完成签到,获得积分10
7秒前
张斯瑞完成签到,获得积分10
7秒前
8秒前
haojiahui完成签到,获得积分10
8秒前
乌梅子酱发布了新的文献求助10
10秒前
SciGPT应助早安采纳,获得10
12秒前
木印天完成签到,获得积分10
13秒前
孙笑川258完成签到,获得积分10
13秒前
15秒前
15秒前
彭于晏应助梦醒采纳,获得10
16秒前
科研通AI6应助谢小盟采纳,获得10
17秒前
cxy发布了新的文献求助20
18秒前
vinc完成签到,获得积分10
18秒前
充电宝应助不鞠一格采纳,获得10
19秒前
脑洞疼应助秦刚采纳,获得10
19秒前
Stove完成签到,获得积分10
20秒前
李联洪完成签到,获得积分10
20秒前
LiXiaomeng完成签到,获得积分10
20秒前
852应助任伟超采纳,获得10
20秒前
李爱国应助iiianchen采纳,获得10
20秒前
哈哈哈发布了新的文献求助10
21秒前
21秒前
anting发布了新的文献求助10
21秒前
McUltrman完成签到,获得积分10
21秒前
21秒前
Yuksn完成签到,获得积分10
23秒前
Dean完成签到,获得积分0
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434440
求助须知:如何正确求助?哪些是违规求助? 4546716
关于积分的说明 14204115
捐赠科研通 4466772
什么是DOI,文献DOI怎么找? 2448303
邀请新用户注册赠送积分活动 1439099
关于科研通互助平台的介绍 1415969