Image Target Detection Algorithm Based on Computer Vision Technology

计算机科学 人工智能 稳健性(进化) 计算机视觉 图像处理 领域(数学) 跟踪(教育) 机器视觉 算法 图像(数学) 教育学 心理学 数学 生物化学 基因 化学 纯数学
作者
Haidi Yuan
标识
DOI:10.1109/icdiime56946.2022.00010
摘要

With the rapid development of intelligent systems and the advent of the era of big data, the continuous development of computers is being promoted. Exporting and tracking moving targets in video images is one of the most important research contents of computer vision. It combines many advanced technologies in the field of computing, such as image processing, pattern recognition, automatic control and artificial intelligence, and is widely used in intelligent surveillance. In various fields such as traffic control, machine intelligence and medical diagnosis, visual effects are obtained through image or image processing. Record videos from the computer and perform specific mechanical tasks. In terms of intelligent tracking, as the demand for applications in various complex environments continues to grow, how to improve the robustness and accuracy of moving target tracking and tracking algorithms has become the focus of ongoing target tracking research. This paper studies the image target detection algorithm based on computer vision technology. Firstly, the literature research method is used to summarize the existing problems of image target detection based on computer vision technology and the existing algorithms. The experiment is used to analyze the image target based on computer vision technology. The detection algorithm is verified, and the error rate of image target detection of the algorithm proposed in this paper is compared. According to the experimental results, it can be seen from Figure 1 that in experiment 1, the target detection of the GMM-STMRF algorithm is more accurate than other methods based on the calculation of the false detection rate. The maximum false detection rate is only 2.3%, and the other algorithms have 5.4%- 11.1% false detection rate The GMM-STMRF algorithm increases the multi-frame calculation in the time dimension, so the calculation time has increased. Algorithms such as GMM and MeanShift need to estimate the multi-frame parameters, and the time complexity is also high. In experiment 2, the target detection of the GMM-STMRF algorithm is more accurate than other methods based on the calculation of the false detection rate. The highest false detection rate is only 2.2%, and the other algorithms have a false detection rate of 6.1%-11.8%, respectively. Among them, Meanshift is the highest, Gaussian mixture model is behind, and FCM takes the second place. According to Table I, Table II, Table III, the false detection rate of picture recognition in the video library is quite different from the false detection rate of pictures taken in reality. This is related to the complexity of the picture frequency shooting background environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
randylch完成签到,获得积分0
1秒前
SYLH应助wodetaiyangLLL采纳,获得10
5秒前
6秒前
还是白米饭完成签到,获得积分10
7秒前
强健的绮琴完成签到,获得积分10
8秒前
明天又是美好的一天完成签到 ,获得积分10
9秒前
11秒前
11秒前
12秒前
无奈敏完成签到,获得积分10
13秒前
吴雪完成签到 ,获得积分10
13秒前
16秒前
点点完成签到,获得积分10
17秒前
酷波er应助学术废柴采纳,获得10
17秒前
17秒前
烟酒牲完成签到,获得积分10
19秒前
豆浆来点蒜泥完成签到,获得积分10
19秒前
Shelley发布了新的文献求助10
20秒前
忆仙姿完成签到,获得积分10
20秒前
21秒前
陈严完成签到 ,获得积分10
21秒前
pipizhu完成签到 ,获得积分10
21秒前
eayon完成签到,获得积分10
22秒前
QingCress77完成签到,获得积分10
24秒前
Khaleel发布了新的文献求助10
24秒前
毛哥看文献完成签到 ,获得积分10
25秒前
25秒前
25秒前
27秒前
接accept完成签到 ,获得积分10
28秒前
小二郎应助dingyang41采纳,获得10
29秒前
29秒前
30秒前
CodeCraft应助毛哥看文献采纳,获得10
31秒前
Shelley完成签到,获得积分20
32秒前
John发布了新的文献求助30
33秒前
34秒前
赘婿应助yilong采纳,获得30
34秒前
35秒前
35秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825758
求助须知:如何正确求助?哪些是违规求助? 3367957
关于积分的说明 10448523
捐赠科研通 3087392
什么是DOI,文献DOI怎么找? 1698660
邀请新用户注册赠送积分活动 816871
科研通“疑难数据库(出版商)”最低求助积分说明 769973