Optimization of ultrasound-assisted extraction of polysaccharides from Akebia Fruit using an artificial neural network model: Characteristics and antioxidant activity

抗氧化剂 萃取(化学) 多糖 化学 人工神经网络 食品科学 传统医学 色谱法 有机化学 计算机科学 机器学习 医学
作者
Yusang Chen,Meiling Wu,Xiaohong Xu,Shunyao Zhu,M.-H. Herman Shen,Anting Ma,Z. W. She,Senlin Shi,Xi Han,Ting Zhang
出处
期刊:Ultrasonics Sonochemistry [Elsevier]
卷期号:120: 107447-107447 被引量:2
标识
DOI:10.1016/j.ultsonch.2025.107447
摘要

This study investigated the extraction, structural characterization, and antioxidant activity of polysaccharides derived from Akebia Fruit. The ultrasonic-assisted extraction (UAE) process of polysaccharides was optimized through the application of the Box-Behnken Design (BBD) in conjunction with the genetic algorithm-back propagation (GA-BP) artificial neural network model. The experimental data showed that the GA-BP model performed better than the BBD model, and more polysaccharide components could be extracted under the process parameters predicted by this model. The GA-BP model predicted the optimal extraction parameters as follows: the extraction temperature was 65 ℃, the solid-liquid ratio was 1:50 g/mL, the extraction power was 400 W. Experimental results showed that combining UAE with GA-BP artificial neural network not only enabled efficient extraction of polysaccharides but also optimized the extraction process. After purification, AFP-1 was obtained and its characterization was conducted. Structural analysis results indicated that compound AFP-1 was a homogeneous polysaccharide with a lamellar structure and a molecular weight of 13,775 Da. The polysaccharide contained a network of pyranose rings, which were interconnected to form a complex framework. The polysaccharide was composed of a mixture of monosaccharide units, specifically arranged in a specific configuration that included mannose, ribose, glucose, galactose, and fucose. Finally, the antioxidant activity of AFP-1 was preliminarily verified through in vitro experiments. Subsequent research could systematically explore the biological activities of AFP-1, by employing both in vitro and in vivo models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
务实凡灵发布了新的文献求助10
3秒前
3秒前
LMX完成签到 ,获得积分10
4秒前
4秒前
4秒前
Jerry完成签到,获得积分10
6秒前
unfraid发布了新的文献求助10
6秒前
聪慧航空发布了新的文献求助10
7秒前
超级的诗兰完成签到,获得积分10
7秒前
上官若男应助张三采纳,获得10
8秒前
lalala应助KK采纳,获得20
8秒前
8秒前
chen发布了新的文献求助10
8秒前
房产中介发布了新的文献求助10
9秒前
余南发布了新的文献求助10
9秒前
paper发布了新的文献求助10
9秒前
领导范儿应助有魅力听白采纳,获得10
10秒前
生动的芙蓉完成签到,获得积分10
11秒前
Optimistic发布了新的文献求助20
11秒前
汪禹发布了新的文献求助10
11秒前
不安枕头完成签到 ,获得积分10
12秒前
12秒前
Akihi完成签到,获得积分10
13秒前
张美环完成签到 ,获得积分10
14秒前
15秒前
盏盏应助WYZ采纳,获得10
16秒前
Jin完成签到,获得积分10
17秒前
余南完成签到,获得积分10
17秒前
星辰大海应助Smoiy采纳,获得10
18秒前
秋子骞发布了新的文献求助10
18秒前
20秒前
liwang发布了新的文献求助10
20秒前
汪禹完成签到,获得积分10
20秒前
顾矜应助幽默书瑶采纳,获得10
21秒前
芷兰丁香完成签到,获得积分10
22秒前
木冉完成签到 ,获得积分10
23秒前
25秒前
asd发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297021
求助须知:如何正确求助?哪些是违规求助? 4446041
关于积分的说明 13838182
捐赠科研通 4331101
什么是DOI,文献DOI怎么找? 2377446
邀请新用户注册赠送积分活动 1372686
关于科研通互助平台的介绍 1338278