Dynamic Oxygen Vacancy Engineering of Single‐Atom Nanozymes for Boosting Oxidase‐Like Activity

材料科学 Boosting(机器学习) 空位缺陷 纳米技术 Atom(片上系统) 工程物理 化学物理 凝聚态物理 计算机科学 物理 人工智能 嵌入式系统
作者
Mingyang Jiang,Lie Wu,Chenchen Chu,Yu Zhang,Chaolei Hua,Chu Li,Yijie Chen,Guan Liu,Qiongdi Zhang,Xue‐Feng Yu,Wenhua Zhou,Shengyong Geng
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202516671
摘要

Abstract Single‐atom nanozymes (SANs) encounter significant challenges in achieving optimal activity due to the insufficient synergistic modulation of isolated catalytic sites. Herein, a photochemical reduction strategy is presented for simultaneously constructing Pt‐O 6 catalytic centers and oxygen vacancies (OVs) within mesoporous silica‐supported platinum single‐atoms (mSiO 2 ‐PtSANs). The density of OVs can be dynamically regulated by adjusting the UV exposure time. This UV‐mediated dynamic engineering of OVs significantly enhances the oxidase (OXD)‐like activity of mSiO 2 ‐PtSANs, leading to a 34.3‐fold reduction in the Michaelis–Menten constant ( K m ) value and a 62.8‐fold increase in catalytic efficiency ( K cat / K m ). Density functional theory (DFT) calculations demonstrate that OVs promote O 2 activation, facilitate electron transfer, and reduce the energy barrier for ·OH formation. Engineered with abundant OVs, the mSiO 2 ‐PtSANs drive persistent reactive oxygen species (ROS) generation, which can act as an effective strategy to amplify ferroptotic cell death. To further harness this therapeutic synergy, the ferroptosis inducer RSL3 is loaded into the nanoplatform with a drug loading efficiency of 65.8%, yielding the mSiO 2 ‐PtSANs@RSL3 nanocatalytic agent. This integrated system significantly enhances antitumor efficacy through the synergistic combination of chemodynamic therapy (CDT) and ferroptosis induction, as demonstrated in both in vitro and in vivo models. The study establishes a novel paradigm for the atomically precise design of SANs through OVs‐mediated electronic modulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心芷荷发布了新的文献求助10
1秒前
1秒前
che完成签到,获得积分10
2秒前
3秒前
甜甜斓发布了新的文献求助10
4秒前
4秒前
负蕲完成签到,获得积分10
4秒前
hbhsjk关注了科研通微信公众号
5秒前
S-Lab Sonic发布了新的文献求助10
6秒前
7秒前
缓慢怜翠发布了新的文献求助10
8秒前
8秒前
任性映秋发布了新的文献求助10
8秒前
8秒前
科研通AI5应助爱听歌起眸采纳,获得10
8秒前
9秒前
9秒前
athenalin1988完成签到,获得积分10
9秒前
核桃发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
上官若男应助周五采纳,获得30
12秒前
科研通AI5应助鲜艳的帅哥采纳,获得10
12秒前
HJJHJH发布了新的文献求助10
13秒前
S-Lab Sonic完成签到,获得积分10
13秒前
14秒前
沙亮完成签到 ,获得积分10
14秒前
妮子完成签到,获得积分10
14秒前
TK发布了新的文献求助10
15秒前
15秒前
hyg发布了新的文献求助10
15秒前
17秒前
英俊的铭应助xiu采纳,获得10
17秒前
烟花应助HJJHJH采纳,获得10
18秒前
耍酷弱发布了新的文献求助10
18秒前
李健的小迷弟应助孙1采纳,获得10
23秒前
23秒前
24秒前
why发布了新的文献求助10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228