Advanced Nanoparticle Therapeutics for Targeting Neutrophils in Inflammatory Diseases

中性粒细胞胞外陷阱 炎症 吞噬作用 免疫学 效应器 脱颗粒 医学 粒细胞 受体 内科学
作者
Min Ji Byun,Elizabeth S. Nakasone,Ha Eun Shin,Hyojin Lee,Jong‐Chan Park,Wonhwa Lee,Wooram Park,Chun Gwon Park,Juwon Park,Se‐Na Kim
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:14 (28): e2502092-e2502092 被引量:2
标识
DOI:10.1002/adhm.202502092
摘要

Abstract Neutrophils, the most abundant leukocytes in human blood, play a critical role in the initial response to acute infection and injury. Activated neutrophils exert three primary effector functions: phagocytosis, degranulation of proteolytic enzymes into pericellular spaces, and generation of neutrophil extracellular traps (NETs). However, dysregulated neutrophil function can lead to tissue damage and inflammation, resulting in organ dysfunction that ultimately contributes to the progression of various diseases. Given the implication of neutrophils in the pathogenesis of diseases arising from chronic inflammation, exploring emerging therapies targeting these cells is critical for developing more effective treatment options. This review highlights nanotechnology‐based therapeutic strategies aimed at modulating neutrophil activity and NET formation, with a focus on nanoparticles (NPs) and hydrogels. NPs‐based delivery systems can regulate excessive neutrophil activity through targeted delivery of anti‐inflammatory drugs, alteration of gene expression, induction of cell death, or inhibition of neutrophil recruitment. Additionally, various nanotechnology‐based therapeutics can inhibit NET formation or degrade NETs following neutrophil activation. NPs can also be internalized by neutrophils and utilized as carriers, facilitating localized therapeutic delivery as neutrophils are recruited to inflammatory sites. The importance of targeting or harnessing neutrophils are explained and we discuss therapeutic strategies to control their activity, which may aid in designing future treatments for neutrophil‐mediated inflammatory diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
爱橙色的阿七完成签到,获得积分20
1秒前
星河鹭起完成签到,获得积分10
1秒前
qqcc001发布了新的文献求助10
3秒前
3秒前
lalla发布了新的文献求助10
3秒前
所所应助李,,,,采纳,获得10
4秒前
12345完成签到,获得积分10
5秒前
mint-WANG发布了新的文献求助10
5秒前
sywkamw发布了新的文献求助30
5秒前
李博士完成签到,获得积分10
6秒前
酷波er应助上官以山采纳,获得10
6秒前
corrine1426发布了新的文献求助10
7秒前
小马甲应助肖潇雨歇采纳,获得10
7秒前
sleepingfish应助kenyant采纳,获得20
8秒前
Aliaoovo发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
12秒前
GGGrigor发布了新的文献求助10
12秒前
想摆就摆完成签到,获得积分10
13秒前
深情安青应助FGG采纳,获得10
13秒前
13秒前
8888拉发布了新的文献求助10
14秒前
普区完成签到,获得积分20
14秒前
14秒前
15秒前
Augreen完成签到,获得积分10
15秒前
情怀应助ztl17523采纳,获得10
16秒前
16秒前
Yang发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
Cici发布了新的文献求助10
19秒前
上官以山发布了新的文献求助10
19秒前
Hean完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5190952
求助须知:如何正确求助?哪些是违规求助? 4374481
关于积分的说明 13621308
捐赠科研通 4228383
什么是DOI,文献DOI怎么找? 2319255
邀请新用户注册赠送积分活动 1317796
关于科研通互助平台的介绍 1267826