Predicting human-activity intensity in urban areas with a prior-enhanced probabilistic-deterministic model

概率逻辑 强度(物理) 地理 统计模型 计算机科学 计量经济学 统计 地图学 环境科学 数学 物理 量子力学
作者
Cheng Zhong,Sheng Wu,Peixiao Wang,Hengcai Zhang,Shifen Cheng,Feng Lü
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:: 1-25
标识
DOI:10.1080/13658816.2025.2562250
摘要

Although numerous models have been proposed to predict the intensity of human activities in urban areas, two major issues hamper the performance of existing models: (1) fail to incorporate appropriate prior knowledge instrumental for improving accuracy and interpretability; (2) fail to integrate probabilistic and deterministic predictions to achieve complementary strengths, namely uncertainty quantification and high predictive accuracy. To address these challenges, we proposed a prior-enhanced dual-mode spatiotemporal graph neural network (PED-STGNN) to support both probabilistic and deterministic predictions. Specifically, we introduced a hypergraph node-to-vector (hypernode2vec) method to capture the multivariate functional similarity prior derived from complex and multivariate relations between urban regions. This functional similarity characterizes urban systems more precisely than existing methods relying on first-order pairwise relations. It improves accuracy and interpretability while enabling spatial modeling of higher-order multivariate relations beyond first-order pairwise relations. We also designed a plug-and-play probabilistic prediction module that enables switches between probabilistic and deterministic modes. Experiments based on the human activity intensity in Fuzhou, China, demonstrated the advantages in accuracy, interpretability and multi-scenario applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
眼睛大不斜完成签到,获得积分10
刚刚
胡萝卜和小灰兔完成签到 ,获得积分10
刚刚
刚刚
Mic应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得20
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
Noah完成签到 ,获得积分0
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
zhouz发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
trojan621发布了新的文献求助10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Vivian完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Kid关闭了Kid文献求助
3秒前
Ankher发布了新的文献求助30
3秒前
4秒前
4秒前
bi8bo发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308276
求助须知:如何正确求助?哪些是违规求助? 4453483
关于积分的说明 13857227
捐赠科研通 4341210
什么是DOI,文献DOI怎么找? 2383705
邀请新用户注册赠送积分活动 1378353
关于科研通互助平台的介绍 1346311