材料科学
电解质
金属锂
锂(药物)
聚合物
聚合物电解质
接口(物质)
离子
金属
固态
锂离子电池的纳米结构
无机化学
快离子导体
纳米技术
化学工程
电化学
电极
离子电导率
工程物理
物理化学
有机化学
复合材料
冶金
化学
毛细管作用
内分泌学
工程类
医学
毛细管数
作者
Shuixin Xia,Xiangfeng Zhang,Zongyan Jiang,Xiaoyan Wu,Jodie A. Yuwono,Chenrui Li,Cheng Wang,Gemeng Liang,Mingnan Li,Fangli Zhang,Yu Yi,Yong Jiang,Jianfeng Mao,Shiyou Zheng,Zhanhu Guo
标识
DOI:10.1002/adma.202510376
摘要
Abstract Ultrathin solid‐polymer‐electrolytes (SPEs) are the most promising alternative substituting for the conventional liquid electrolyte to enable high‐energy‐density, safe lithium‐metal‐batteries (LMBs). Nevertheless, developing ultrathin SPEs with both high ionic conductivity, and strong Li dendrite retardant is still a significant challenge. Here a scalable fabrication of high‐performance ultrathin (≈7.8 µm) polycarbonate‐based electrolyte (UPCE) is proposed via electrolyte structural engineering, phase separation‐derived poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVH) porous scaffold, without use of additional liquid additives. The rational electrolyte structural modulation with 1‐fluoro‐4‐(1‐methylethenyl)benzene (FMB) enables a weakened Li + ‐polymer interaction due to weak Li + solvation with fluorine, benzene ring, facilitates the formation of LiF‐rich solid‐electrolyte‐interphase on Li metal surface. As a result, the designed UPCE delivers a high ionic conductivity of 4.8 × 10 −4 S cm −1 , an ultrahigh critical current density of 11.5 mA cm −2 at 25 °C. The solid‐state Li symmetric cell attains unprecedented ultralong cycling over 6000 h at 0.5 mA cm −2 . Furthermore, the Li|LiCoO 2 cell cycles stably over 1500 cycles at a high operating voltage of 4.5 V, and the pouch cell can achieve a high energy density of 495 Wh kg −1 excluding the packaging. This work offers a new pathway inspiring efforts to commercialize ultrathin SPEs for high‐energy solid‐state LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI