Unsupervised Transfer Learning Approach With Adaptive Reweighting and Resampling Strategy for Inter-Subject EOG-Based Gaze Angle Estimation

计算机科学 重采样 人工智能 学习迁移 凝视 规范化(社会学) 均方误差 模式识别(心理学) 机器学习 统计 数学 人类学 社会学
作者
Zheng Zeng,Linkai Tao,Ruizhi Su,Yunfeng Zhu,Long Meng,Adili Tuheti,Hao Huang,Feng Shu,Wei Chen,Chen Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 157-168 被引量:3
标识
DOI:10.1109/jbhi.2023.3330192
摘要

Gaze estimation based on electrooculograms (EOGs) has been widely explored. However, the inter-subject variability of EOGs still leaves a significant challenge for practical applications. It contributes to performance degradation when handling inter-subject issues. In this paper, an unsupervised transfer learning approach with an adaptive reweighting and resampling (ARR) strategy to fully consider individual variability is proposed for EOG-based gaze angle estimation. It allows quantifying domain shifts by leveraging the source-target similarities, reweighting and resampling the source data to retain relevant instances and disregard irrelevant instances during adaptation. Specifically, our proposed methodology first assesses the domain shifts via decomposing transformation matrices, which are estimated between the training subjects (denoted as multi-source domains) and the test subject (denoted as target domain). Then, the multi-domain shifts are assigned as weighted indicators to resample the multi-source domains for model training. Comparative experiments with several prevailing transfer learning methods including CORrelation ALignment (CORAL), Geodesic Flow Kernel (GFK), Joint Distribution Adaptation (JDA), Transfer component analysis (TCA), and Balanced distribution adaption (BDA) using two different normalization processes were conducted on a realistic scenario across 18 subjects. Experimental results demonstrate that the ARR strategy can significantly improve performance (mean absolute error (MAE) reduction: 7.0%, root mean square error (RMSE) reduction: 6.3%), outperforming the prevailing methods. Besides, the impacts of data diversity and data size on ARR strategy are further investigated. It exhibits that data size is more important than data diversity for EOG-based gaze angle estimation, and also presents the benefits of the ARR strategy for dealing with practical scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
messyknots完成签到,获得积分10
刚刚
voyager完成签到,获得积分10
刚刚
吃饱了就晒太阳完成签到,获得积分10
刚刚
1秒前
满意外套完成签到,获得积分10
1秒前
pebble完成签到,获得积分10
1秒前
fifteen应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
fifteen应助科研通管家采纳,获得10
2秒前
笨笨凡松完成签到,获得积分10
3秒前
tudouni完成签到,获得积分10
3秒前
王哪跑12完成签到,获得积分10
3秒前
ding应助怕黑雨梅采纳,获得30
4秒前
唠叨的映真完成签到,获得积分10
4秒前
Plucky完成签到,获得积分10
5秒前
shunli发布了新的文献求助10
5秒前
某云完成签到 ,获得积分10
5秒前
mumu完成签到,获得积分10
6秒前
ljl12138发布了新的文献求助10
6秒前
恸哭的千鸟完成签到,获得积分10
6秒前
木头发布了新的文献求助10
6秒前
QWJ完成签到,获得积分10
6秒前
无敌霸王龙完成签到,获得积分10
6秒前
rui完成签到 ,获得积分10
7秒前
小贝壳要快乐吖完成签到,获得积分10
8秒前
海豚完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
collapsar1完成签到,获得积分10
10秒前
10秒前
skycool完成签到,获得积分10
11秒前
wyw123完成签到,获得积分10
11秒前
LLY完成签到,获得积分10
11秒前
why完成签到,获得积分10
11秒前
哞哞完成签到 ,获得积分10
13秒前
MingQue完成签到,获得积分10
13秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
Research on the design of hear-through controllers for active noise control headphones based on cascade biquad filters considering different directions of sound arrivals 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872081
求助须知:如何正确求助?哪些是违规求助? 3414077
关于积分的说明 10687606
捐赠科研通 3138504
什么是DOI,文献DOI怎么找? 1731707
邀请新用户注册赠送积分活动 834943
科研通“疑难数据库(出版商)”最低求助积分说明 781507