Surrogate modelling and uncertainty quantification based on multi-fidelity deep neural network

人工神经网络 计算机科学 算法 不确定度量化 非线性系统 水准点(测量) 高斯分布 数学 人工智能 机器学习 量子力学 地理 物理 大地测量学
作者
Zhihui Li,Francesco Montomoli
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2308.01261
摘要

To reduce training costs, several Deep neural networks (DNNs) that can learn from a small set of HF data and a sufficient number of low-fidelity (LF) data have been proposed. In these established neural networks, a parallel structure is commonly proposed to separately approximate the non-linear and linear correlation between the HF- and LF data. In this paper, a new architecture of multi-fidelity deep neural network (MF-DNN) was proposed where one subnetwork was built to approximate both the non-linear and linear correlation simultaneously. Rather than manually allocating the output weights for the paralleled linear and nonlinear correction networks, the proposed MF-DNN can autonomously learn arbitrary correlation. The prediction accuracy of the proposed MF-DNN was firstly demonstrated by approximating the 1-, 32- and 100-dimensional benchmark functions with either the linear or non-linear correlation. The surrogating modelling results revealed that MF-DNN exhibited excellent approximation capabilities for the test functions. Subsequently, the MF DNN was deployed to simulate the 1-, 32- and 100-dimensional aleatory uncertainty propagation progress with the influence of either the uniform or Gaussian distributions of input uncertainties. The uncertainty quantification (UQ) results validated that the MF-DNN efficiently predicted the probability density distributions of quantities of interest (QoI) as well as the statistical moments without significant compromise of accuracy. MF-DNN was also deployed to model the physical flow of turbine vane LS89. The distributions of isentropic Mach number were well-predicted by MF-DNN based on the 2D Euler flow field and few experimental measurement data points. The proposed MF-DNN should be promising in solving UQ and robust optimization problems in practical engineering applications with multi-fidelity data sources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白墨染完成签到,获得积分20
刚刚
曹问旋发布了新的文献求助10
1秒前
K先生发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助150
1秒前
onlyfive发布了新的文献求助10
1秒前
SciGPT应助予初采纳,获得10
1秒前
hxh完成签到 ,获得积分10
3秒前
思源应助MDW采纳,获得10
3秒前
jerry完成签到,获得积分10
3秒前
4秒前
卤笋发布了新的文献求助10
4秒前
5秒前
456发布了新的文献求助10
5秒前
5秒前
SDNUDRUG发布了新的文献求助10
5秒前
5秒前
111发布了新的文献求助10
5秒前
汤二发布了新的文献求助10
6秒前
含羞草发布了新的文献求助10
6秒前
5114发布了新的文献求助10
6秒前
xlll发布了新的文献求助10
6秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
所所应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
8秒前
开朗的傲丝完成签到 ,获得积分10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
xiang完成签到,获得积分20
8秒前
Dicy发布了新的文献求助30
8秒前
田様应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114313
求助须知:如何正确求助?哪些是违规求助? 4321588
关于积分的说明 13466235
捐赠科研通 4153291
什么是DOI,文献DOI怎么找? 2275716
邀请新用户注册赠送积分活动 1277686
关于科研通互助平台的介绍 1215677