钝化
钙钛矿(结构)
能量转换效率
材料科学
载流子寿命
碳化物
电子迁移率
光电子学
热稳定性
图层(电子)
化学工程
纳米技术
化学
结晶学
冶金
硅
工程类
作者
Jiandong He,Guilin Hu,Yuanyuan Jiang,Siyuan Zeng,Guosheng Niu,Guitao Feng,Zhe Liu,Kaiyi Yang,Cong Shao,Yao Zhao,Fuyi Wang,Yongjun Li,Jizheng Wang
标识
DOI:10.1002/anie.202311865
摘要
Passivating the interfaces between the perovskite and charge transport layers is crucial for enhancing the power conversion efficiency (PCE) and stability in perovskite solar cells (PSCs). Here we report a dual-interface engineering approach to improving the performance of FA0.85 MA0.15 Pb(I0.95 Br0.05 )3 -based PSCs by incorporating Ti3 C2 Clx Nano-MXene and o-TB-GDY nanographdiyne (NanoGDY) into the electron transport layer (ETL)/perovskite and perovskite/ hole transport layer (HTL) interfaces, respectively. The dual-interface passivation simultaneously suppresses non-radiative recombination and promotes carrier extraction by forming the Pb-Cl chemical bond and strong coordination of π-electron conjugation with undercoordinated Pb defects. The resulting perovskite film has an ultralong carrier lifetime exceeding 10 μs and an enlarged crystal size exceeding 2.5 μm. A maximum PCE of 24.86 % is realized, with an open-circuit voltage of 1.20 V. Unencapsulated cells retain 92 % of their initial efficiency after 1464 hours in ambient air and 80 % after 1002 hours of thermal stability test at 85 °C.
科研通智能强力驱动
Strongly Powered by AbleSci AI