亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRCNet: Multiresolution LiDAR-Camera Calibration Using Optical Center Distance Loss Network

激光雷达 校准 遥感 中心(范畴论) 计算机科学 人工智能 计算机视觉 光学 地质学 物理 化学 量子力学 结晶学
作者
Hao Wang,Zhangyu Wang,Guizhen Yu,Songyue Yang,Yang Yang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 19661-19672 被引量:1
标识
DOI:10.1109/jsen.2023.3328267
摘要

The integration of cameras and LiDAR sensors has emerged as a promising approach to enhance environmental perception and 3D reconstruction capabilities in autonomous vehicles and robotic systems. Precise extrinsic calibration is of paramount importance to achieve effective multi-sensor fusion applications. Traditional calibration methods often rely on manual procedures and specific calibration targets, which can be time-consuming and prone to errors. In contrast, Convolutional Neural Networks (CNNs) have shown potential in devising end-to-end calibration systems, leveraging their ability to extract robust features automatically. In this paper, MRCNet, an online end-to-end LiDAR-camera calibration network, which overcomes the limitations of traditional methods and previous CNN-based approaches, is proposed. This article introduces a multi-resolution feature extraction module, enabling the extraction of comprehensive and informative features from RGB images and depth images derived from point clouds. Additionally, the optical center distance loss, a novel concept that accounts for the camera's optical imaging characteristics, facilitating more effective feature extraction is incorporated. MRCNet is the first online calibration network that considers the influence of camera imaging properties. This paper employs an iterative refinement process to progressively estimate the calibration error, allowing online extrinsic estimation. Evaluation tests on the KITTI Odometry dataset demonstrate the superior performance of MRCNet compared to existing learning-based methods, achieving a mean absolute calibration error of 0.350cm in translation and 0.033° in rotation. Furthermore, ablation studies validate the effectiveness of the modules of MRCNet. The code for MRCNet will be made publicly available at: https://github.com/AlexWang0214/MRCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助孙伟健采纳,获得10
13秒前
24秒前
孙伟健发布了新的文献求助10
31秒前
孙伟健完成签到,获得积分10
39秒前
11完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
英俊的铭应助朴素的乘风采纳,获得10
5分钟前
HS完成签到,获得积分0
6分钟前
迷茫的一代完成签到,获得积分10
6分钟前
沙海沉戈完成签到,获得积分0
6分钟前
6分钟前
7分钟前
xirongx完成签到 ,获得积分10
7分钟前
8分钟前
Tumumu完成签到,获得积分10
8分钟前
8分钟前
8分钟前
酷波er应助科研通管家采纳,获得10
8分钟前
8分钟前
老石完成签到 ,获得积分10
9分钟前
9分钟前
水的很厉害完成签到,获得积分10
10分钟前
沉沉完成签到 ,获得积分0
10分钟前
研友_nEWRJ8完成签到,获得积分10
10分钟前
安静发布了新的文献求助10
11分钟前
bji发布了新的文献求助10
11分钟前
11分钟前
11分钟前
bji完成签到,获得积分10
11分钟前
11分钟前
Claudia发布了新的文献求助10
11分钟前
mt13完成签到,获得积分10
12分钟前
Vincent完成签到 ,获得积分10
13分钟前
震动的凡柔完成签到,获得积分10
13分钟前
13分钟前
科目三应助陶醉的手套采纳,获得10
14分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804204
求助须知:如何正确求助?哪些是违规求助? 3349026
关于积分的说明 10341113
捐赠科研通 3065185
什么是DOI,文献DOI怎么找? 1682960
邀请新用户注册赠送积分活动 808557
科研通“疑难数据库(出版商)”最低求助积分说明 764600