Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study

医学 无线电技术 旁侵犯 队列 放射科 肝内胆管癌 计算机断层摄影术 内科学 癌症 病理
作者
Ziwei Liu,Chun Luo,Xinjie Chen,Yanqiu Feng,Jieying Feng,Rong Zhang,Fusheng Ouyang,Xiaohong Li,Zhilin Tan,Lingda Deng,Yifan Chen,Zhiping Cai,Ximing Zhang,Jiehong Liu,Wei Liu,Baoliang Guo,Qiugen Hu
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:43
标识
DOI:10.1097/js9.0000000000000881
摘要

Background: Perineural invasion (PNI) of intrahepatic cholangiocarcinoma (ICC) is a strong independent risk factor for tumor recurrence and long-term patient survival. However, there is a lack of non-invasive tools for accurately predicting the PNI status. We develop and validate a combined model incorporating radiomics signature and clinicoradiological features based on machine learning for predicting PNI in ICC, and used the Shapley Additive explanation (SHAP) to visualize the prediction process for clinical application. Methods: This retrospective and prospective study included 243 patients with pathologically diagnosed ICC (training, n=136; external validation, n=81; prospective, n=26, respectively) who underwent preoperative contrast-enhanced CT between January 2012 and May 2023 at three institutions (three tertiary referral centers in Guangdong Province, China). The ElasticNet was applied to select radiomics features and construct signature derived from CT images, and univariate and multivariate analyses by logistic regression were used to identify the significant clinical and radiological variables with PNI. A robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning was developed and the SHAP was used to visualize the prediction process. A Kaplan–Meier survival analysis was performed to compare prognostic differences between PNI positive and negative groups and was conducted to explore the prognostic information of the combined model. Results: Among 243 patients (mean age, 61.2 y ± 11.0 (SD); 152 men and 91 women), 108 (44.4%) were diagnosed as PNI-positive. The radiomics signature was constructed by seven radiomics features, with areas under the curves (AUCs) of 0.792, 0.748, and 0.729 in the training, external validation, and prospective cohorts, respectively. Three significant clinicoradiological features were selected and combined with radiomics signature to construct a combined model using machine learning. The eXtreme Gradient Boosting (XGBoost) exhibited improved accuracy and robustness (AUCs of 0.884, 0.831, and 0.831, respectively). Survival analysis showed the construction combined model could be used to stratify relapse-free survival (hazard ratio, 1.933; 95% confidence interval (CI): 1.093–3.418; P =0.021). Conclusions: We developed and validated a robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning to accurately identify the PNI statuses of ICC, and visualize the prediction process through SHAP for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
糖霜烤面包完成签到 ,获得积分10
1秒前
1秒前
展博发布了新的文献求助10
1秒前
1秒前
美好凡阳发布了新的文献求助10
2秒前
2秒前
2秒前
马小羊发布了新的文献求助10
2秒前
3秒前
fufu发布了新的文献求助10
3秒前
东东完成签到,获得积分10
3秒前
4秒前
科研通AI5应助俊秀的笑槐采纳,获得10
4秒前
4秒前
所所应助JJS采纳,获得10
5秒前
谢芸发布了新的文献求助10
5秒前
李博士完成签到,获得积分10
6秒前
6秒前
7秒前
cc完成签到 ,获得积分10
7秒前
小白发布了新的文献求助10
7秒前
8秒前
欢喜碧空发布了新的文献求助10
9秒前
重要芯发布了新的文献求助10
10秒前
巫易烟发布了新的文献求助10
10秒前
10秒前
fymshh完成签到,获得积分20
11秒前
zzzzz发布了新的文献求助10
11秒前
11秒前
14秒前
cc发布了新的文献求助10
14秒前
共享精神应助谢芸采纳,获得10
15秒前
爆米花应助kaola采纳,获得10
16秒前
yll完成签到,获得积分10
16秒前
刘雄伟完成签到,获得积分20
16秒前
fymshh发布了新的文献求助10
17秒前
17秒前
传奇3应助LlLly采纳,获得10
17秒前
zhang完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Research Handbook on Corporate Governance in China 800
2025-2031年中国中低通量测序仪行业市场深度研究及投资策略研究报告 500
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4904732
求助须知:如何正确求助?哪些是违规求助? 4182924
关于积分的说明 12987653
捐赠科研通 3948894
什么是DOI,文献DOI怎么找? 2165723
邀请新用户注册赠送积分活动 1184166
关于科研通互助平台的介绍 1090554