Construction and selection of deformation monitoring model for high arch dam using separate modeling technique and composite decision criterion

过度拟合 变形监测 变形(气象学) 组分(热力学) 选型 统计模型 计算机科学 算法 人工智能 地质学 人工神经网络 海洋学 物理 热力学
作者
Rengui Chen,Zhenyu Wu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (4): 2509-2530 被引量:1
标识
DOI:10.1177/14759217231203243
摘要

Deformation prediction is important to ensure the safe and stable operation of arch dams. Statistical models are extensively applied in arch dam deformation monitoring models, which generally include hydrostatic pressure component, temperature component, and aging (irrecoverable) component. In traditional statistical models, aging component is misset, which will cause unreasonable mutual compensation of each component, resulting in overfitting of the overall model. In this paper, the deformation model based on separate modeling technology is, therefore, proposed mitigating the overfitting problem caused by misspecification of the expression of the aging component in traditional statistical models. Dam deformation components related to different effects are extracted from the deformation monitoring sequence with improved complete ensemble empirical mode decomposition with adaptive noise algorithm and equal water level condition. The correct components of the monitoring model are constructed separately. On the one hand, the fitting accuracy of the model is reflected by the coefficient of determination ( R 2 ); on the other hand, the overfitting degree of the model is quantitatively evaluated by the overfitting coefficient (OC), so that the model with high fitting accuracy and prediction accuracy is determined, that is, the optimal model is selected by using the R 2 -OC criterion. In this paper, displacement monitoring data from measurement points are used for analysis. The results show that the deformation monitoring model based on the separated modeling technique exhibits higher prediction accuracy and lower false alarm rate. The R 2 -OC criterion better reflects the degree of overfitting of the monitoring model and the real situation of arch dam monitoring and warning, which improves the accuracy of model selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zkai完成签到,获得积分10
刚刚
独特的凝云完成签到 ,获得积分10
刚刚
有一天完成签到 ,获得积分10
刚刚
丸子完成签到 ,获得积分10
1秒前
阿衡发布了新的文献求助10
2秒前
有魅力强炫完成签到,获得积分10
3秒前
LXX-k完成签到,获得积分10
3秒前
3秒前
坚定的草丛完成签到,获得积分10
4秒前
艾七七完成签到,获得积分10
5秒前
舒服的灵安完成签到 ,获得积分10
5秒前
幽默不愁完成签到,获得积分10
5秒前
5秒前
阿伦完成签到,获得积分10
5秒前
cccc完成签到,获得积分10
6秒前
6秒前
俏皮的芝麻完成签到,获得积分10
7秒前
高大的水壶完成签到,获得积分10
7秒前
陶醉如柏完成签到,获得积分10
7秒前
李振博完成签到 ,获得积分10
8秒前
坚强的铅笔完成签到 ,获得积分10
8秒前
浮槎完成签到,获得积分10
8秒前
8秒前
spring完成签到 ,获得积分10
9秒前
阿衡完成签到,获得积分10
9秒前
夕阳发布了新的文献求助10
9秒前
安玖完成签到,获得积分10
10秒前
洋山芋完成签到,获得积分10
11秒前
ee发布了新的文献求助10
11秒前
我有一只羊完成签到,获得积分10
12秒前
Owen应助小申采纳,获得10
13秒前
春锅锅完成签到,获得积分10
13秒前
大砖华发布了新的文献求助20
13秒前
kwm完成签到,获得积分10
14秒前
15秒前
英勇的曼卉完成签到,获得积分10
15秒前
陈艺鹏完成签到,获得积分10
15秒前
杨自强完成签到,获得积分10
16秒前
积极的觅松完成签到 ,获得积分10
17秒前
啦啦啦啦啦完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804329
求助须知:如何正确求助?哪些是违规求助? 3349122
关于积分的说明 10341845
捐赠科研通 3065225
什么是DOI,文献DOI怎么找? 1682994
邀请新用户注册赠送积分活动 808620
科研通“疑难数据库(出版商)”最低求助积分说明 764620