A spatially promoted SVM model for GRACE downscaling: Using ground and satellite-based datasets

缩小尺度 支持向量机 卫星 环境科学 计算机科学 遥感 相关系数 气候学 气象学 人工智能 机器学习 地质学 地理 降水 工程类 航空航天工程
作者
Hamed Yazdian,Narjes Salmani-Dehaghi,Mohammadali Alijanian
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:626: 130214-130214 被引量:9
标识
DOI:10.1016/j.jhydrol.2023.130214
摘要

Satellite-based terrestrial water storage changes have been recorded using the Gravity Recovery and Climate Experiment (GRACE) satellite which causing it an important dataset in hydrology and other related fields. GRACE dataset is widely utilized in many studies, but its coarse spatial resolution is a limiting drawback. Machine-learning approaches (e.g., ANN and SVM) are commonly applied in spatially downscaling. However, their input formation, which is in vector form, is a limitation of considering neighbor relations between the gridded-based inputs, specifically in spatial downscaling. Thus, developing an appropriate, simple, fast, and novel model to spatially downscale GRACE resolution is initially necessary for its utilizations. In this study, a Spatially Promoted Support Vector Machine (SP-SVM) model is innovatively proposed for GRACE downscaling from 0.5° to 0.25°. This promotion is investigated utilizing the distances between the unknown target points (with 0.25°) and their surrounding GRACE-valued points (0.5°), called their Distance Effect Coefficient (DEC), as the SP-SVM model input. In addition, the efficiencies of different in-situ and satellite-based datasets (fifteen variables from May 2005 to August 2020) are evaluated as the inputs of the GRACE downscaling models. After finding the most influential datasets, showing the best correlation with the GRACE, their best combinations in GRACE downscaling are identified. Based on the results, the set of PERSIANN-CDR without delay, the in-situ evaporation with a 1-month delay, and the soil moisture in 0–10 cm depth with a 1-month delay show the best performance in GRACE downscaling. The results of GRACE downscaling by the SP-SVM approach are also compared with the ones based on a usual statistical SVM (S-SVM) model, consisting of an intermediate bias interpolation to improve the estimations through a bias correction step. The results show that the SP-SVM model outperforms the common statistical SVM-based. Thus, compared with the usual S-SVM approach, the proposed SP-SVM (linear) model could be used as a simpler and more accurate model for downscaling any variable in a hierarchical process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
岛err完成签到,获得积分10
1秒前
小疯子007完成签到,获得积分10
2秒前
火星上的雨莲完成签到,获得积分10
3秒前
bkagyin应助冰红茶采纳,获得10
4秒前
CCL完成签到,获得积分10
5秒前
上官若男应助阿北采纳,获得30
6秒前
pb完成签到 ,获得积分10
6秒前
6秒前
zgtmark完成签到,获得积分10
7秒前
8秒前
winni完成签到,获得积分10
9秒前
金阿垚在科研完成签到,获得积分10
11秒前
飘文献完成签到,获得积分10
12秒前
12秒前
科研通AI2S应助abcd_1067采纳,获得10
13秒前
14秒前
15秒前
tdtk发布了新的文献求助10
16秒前
雷锋完成签到 ,获得积分10
16秒前
唠叨的傲薇完成签到 ,获得积分10
18秒前
HEAUBOOK应助冰红茶采纳,获得10
18秒前
友好的夏之完成签到,获得积分10
20秒前
24秒前
ti完成签到,获得积分10
24秒前
阿敬完成签到,获得积分10
24秒前
绿兔子完成签到 ,获得积分10
24秒前
abcd_1067完成签到,获得积分10
24秒前
slin_sjtu完成签到,获得积分0
25秒前
25秒前
sjl完成签到,获得积分10
25秒前
25秒前
瑞仔完成签到,获得积分10
26秒前
HEAUBOOK应助冰红茶采纳,获得10
28秒前
传奇3应助gege采纳,获得10
28秒前
李佳宇发布了新的文献求助50
31秒前
32秒前
32秒前
余味应助lanbing802采纳,获得10
32秒前
ananan完成签到 ,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782820
求助须知:如何正确求助?哪些是违规求助? 3328174
关于积分的说明 10235032
捐赠科研通 3043175
什么是DOI,文献DOI怎么找? 1670456
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759010