Enhanced spin-polarization via partial Ge-dimerization as the driving force of the charge density wave in FeGe

材料科学 凝聚态物理 极化(电化学) 部分电荷 自旋极化 电荷(物理) 电荷密度波 密度泛函理论 自旋(空气动力学) 化学物理 物理化学 超导电性 物理 热力学 电子 量子力学 化学
作者
Yilin Wang
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:7 (10) 被引量:38
标识
DOI:10.1103/physrevmaterials.7.104006
摘要

A $2\ifmmode\times\else\texttimes\fi{}2\ifmmode\times\else\texttimes\fi{}2$ charge density wave (CDW) was recently observed deep inside the antiferromagnetic phase of a kagome metal FeGe, which significantly enhances its spin-polarization. A key question is whether the CDW in FeGe is driven by its electronic correlation and magnetism. Here, we address this problem using density functional theory and its combination with $U$ as well as dynamical mean-field theory. Our calculations show that large dimerization ($\ensuremath{\sim}1.3$ \AA{}) of Ge1 sites along the $c$ axis will enhance electronic correlation of the Fe-$3d$ orbitals and, as a result, it enhances the spin-polarization and saves more magnetic exchange energies. We find that the balance between magnetic energy saving and structural energy cost via partially dimerizing Ge1 sites in an enlarged superstructure could induce a new local minimum in total energies. The response to the large partial Ge1-dimerization will induce additional small modulations ($<0.05$ \AA{}) of other sites in the kagome and honeycomb layers, which further reduces the total energy and leads to a stable $2\ifmmode\times\else\texttimes\fi{}2\ifmmode\times\else\texttimes\fi{}2$ CDW ground state in FeGe. Our results are in good agreement with the existing experiments and reveal a different unconventional CDW mechanism driven by primarily saving magnetic energies via the interplay of structure, electronic correlation, and magnetism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
konosuba完成签到,获得积分0
1秒前
xing发布了新的文献求助10
5秒前
6秒前
SQF完成签到,获得积分20
7秒前
8秒前
9秒前
强健的匕发布了新的文献求助10
9秒前
竹子完成签到,获得积分10
11秒前
Redback发布了新的文献求助20
11秒前
量子星尘发布了新的文献求助10
12秒前
科目三应助WAN采纳,获得10
13秒前
14秒前
15秒前
桃桃完成签到,获得积分10
15秒前
16秒前
科研通AI6应助高知女性采纳,获得10
17秒前
18秒前
18秒前
18秒前
19秒前
xing完成签到,获得积分20
20秒前
adaadlj;a发布了新的文献求助10
20秒前
ding应助zzz采纳,获得30
21秒前
口羊完成签到,获得积分10
21秒前
坚强的飞凤完成签到,获得积分20
22秒前
22秒前
23秒前
23秒前
23秒前
宗晓曼发布了新的文献求助10
23秒前
逆风行SXDZ发布了新的文献求助10
23秒前
小二郎应助顶刊我来了采纳,获得10
23秒前
24秒前
充电宝应助尊敬的之瑶采纳,获得10
24秒前
艾妮吗完成签到,获得积分10
24秒前
SciGPT应助口羊采纳,获得10
26秒前
黄智贤完成签到,获得积分10
26秒前
wanci应助纯真的雨采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744116
关于积分的说明 15000277
捐赠科研通 4796029
什么是DOI,文献DOI怎么找? 2562260
邀请新用户注册赠送积分活动 1521810
关于科研通互助平台的介绍 1481704