Cellular age explains variation in age-related cell-to-cell transcriptome variability

转录组 生物 蛋白质稳态 代谢组 电池类型 遗传学 基因 计算生物学 细胞 进化生物学 基因表达 生物信息学 代谢组学
作者
Ming Yang,Ben Harrison,Daniel E. L. Promislow
出处
期刊:Genome Research [Cold Spring Harbor Laboratory]
卷期号:33 (11): 1906-1916 被引量:1
标识
DOI:10.1101/gr.278144.123
摘要

Organs and tissues age at different rates within a single individual. Such asynchrony in aging has been widely observed at multiple levels, from functional hallmarks, such as anatomical structures and physiological processes, to molecular endophenotypes, such as the transcriptome and metabolome. However, we lack a conceptual framework to understand why some components age faster than others. Just as demographic models explain why aging evolves, here we test the hypothesis that demographic differences among cell types, determined by cell-specific differences in turnover rate, can explain why the transcriptome shows signs of aging in some cell types but not others. Through analysis of mouse single-cell transcriptome data across diverse tissues and ages, we find that cellular age explains a large proportion of the variation in the age-related increase in transcriptome variance. We further show that long-lived cells are characterized by relatively high expression of genes associated with proteostasis and that the transcriptome of long-lived cells shows greater evolutionary constraint than short-lived cells. In contrast, in short-lived cell types, the transcriptome is enriched for genes associated with DNA repair. Based on these observations, we develop a novel heuristic model that explains how and why aging rates differ among cell types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
street完成签到,获得积分20
刚刚
cincincin发布了新的文献求助10
刚刚
香蕉觅云应助余木采纳,获得30
刚刚
刚刚
jesieniu关注了科研通微信公众号
刚刚
1秒前
1秒前
zzzlll完成签到,获得积分10
1秒前
luobeimin发布了新的文献求助10
1秒前
ferritin完成签到 ,获得积分10
1秒前
1秒前
christy发布了新的文献求助10
1秒前
温十一应助黑夜的冰之歌采纳,获得10
2秒前
科研通AI6应助dengdeng采纳,获得30
2秒前
闾丘翠桃发布了新的文献求助10
2秒前
2秒前
年糕111完成签到,获得积分10
3秒前
3秒前
3秒前
liuye0202完成签到,获得积分10
3秒前
Isabel发布了新的文献求助10
4秒前
余健发布了新的文献求助10
4秒前
4秒前
4秒前
4564321发布了新的文献求助10
4秒前
5秒前
street发布了新的文献求助10
5秒前
111完成签到,获得积分10
5秒前
忧虑的香水完成签到,获得积分10
5秒前
CLK发布了新的文献求助10
6秒前
Albert发布了新的文献求助10
6秒前
yangyouling完成签到,获得积分10
6秒前
6秒前
威武的初曼完成签到 ,获得积分10
6秒前
7秒前
honda完成签到,获得积分10
7秒前
7秒前
7秒前
加油阿涛发布了新的文献求助30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873