An improved multi-modal representation-learning model based on fusion networks for property prediction in drug discovery

可解释性 计算机科学 财产(哲学) 代表(政治) 药物发现 人工智能 特征(语言学) 机器学习 一般化 特征学习 分子描述符 数据挖掘 数量结构-活动关系 生物信息学 数学 数学分析 哲学 生物 语言学 认识论 政治 政治学 法学
作者
Jinzhou Wu,Yang Su,Ao Yang,Jingzheng Ren,Yi Xiang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107452-107452 被引量:10
标识
DOI:10.1016/j.compbiomed.2023.107452
摘要

Accurate characterization of molecular representations plays an important role in the property prediction based on deep learning (DL) for drug discovery. However, most previous researches considered only one type of molecular representations, resulting in that it difficult to capture the full molecular feature information. In this study, a novel DL framework called multi-modal molecular representation learning fusion network (MMRLFN) is developed, which could simultaneously learn and integrate drug molecular features from molecular graphs and SMILES sequences. The developed MMRLFN method is composed of three complementary deep neural networks to learn various features from different molecular representations, such as molecular topology, local chemical background information, and substructures at varying scales. Eight public datasets involving various molecular properties used in drug discovery were employed to train and evaluate the developed MMRLFN. The obtained models showed better performances than the existing models based on mono-modal molecular representations. Additionally, a thorough analysis of the noise resistance and interpretability of the MMRLFN has been carried out. The generalization ability and effectiveness of the MMRLFN has been verified by case studies as well. Overall, the MMRLFN can accurately predict molecular properties and provide potentially valuable information from large datasets, thereby maximizing the possibility of successful drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk完成签到 ,获得积分10
1秒前
NVSK发布了新的文献求助10
1秒前
爱喝水完成签到,获得积分10
1秒前
2秒前
科研通AI6应助liuxiang采纳,获得30
2秒前
5秒前
漱石完成签到,获得积分10
5秒前
5秒前
科研通AI5应助whynot采纳,获得10
5秒前
wanci应助一朵小鲜花儿采纳,获得10
7秒前
7秒前
ca0ca0完成签到,获得积分10
7秒前
nenoaowu发布了新的文献求助10
7秒前
机灵柚子发布了新的文献求助10
8秒前
Wayne发布了新的文献求助10
9秒前
as1710549269完成签到,获得积分10
10秒前
欣慰水蓝发布了新的文献求助10
10秒前
爆米花应助钮钴禄甄嬛采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI2S应助笨笨的鬼神采纳,获得10
11秒前
共享精神应助学习采纳,获得10
13秒前
Star1983发布了新的文献求助10
13秒前
14秒前
14秒前
ArkZ完成签到 ,获得积分10
18秒前
Damy完成签到,获得积分10
18秒前
golfgold发布了新的文献求助10
19秒前
研友_LX7lK8完成签到 ,获得积分10
19秒前
klicking完成签到,获得积分10
19秒前
上进完成签到 ,获得积分10
20秒前
留猪完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
25秒前
小白菜完成签到,获得积分10
25秒前
吊炸天完成签到 ,获得积分10
26秒前
27秒前
WR发布了新的文献求助10
27秒前
shore完成签到,获得积分10
28秒前
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4217839
求助须知:如何正确求助?哪些是违规求助? 3751832
关于积分的说明 11797345
捐赠科研通 3416612
什么是DOI,文献DOI怎么找? 1875060
邀请新用户注册赠送积分活动 928856
科研通“疑难数据库(出版商)”最低求助积分说明 837857