Equivalence testing to judge model fit: A Monte Carlo simulation.

结构方程建模 等价(形式语言) 统计 蒙特卡罗方法 验证性因素分析 数学 计量经济学 统计假设检验 样本量测定 拟合优度 逻辑回归 离散数学
作者
James Peugh,Kaylee Litson,David F. Feldon
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:30 (4): 888-925 被引量:6
标识
DOI:10.1037/met0000591
摘要

Decades of published methodological research have shown the chi-square test of model fit performs inconsistently and unreliably as a determinant of structural equation model (SEM) fit. Likewise, SEM indices of model fit, such as comparative fit index (CFI) and root-mean-square error of approximation (RMSEA) also perform inconsistently and unreliably. Despite rather unreliable ways to statistically assess model fit, researchers commonly rely on these methods for lack of a suitable inferential alternative. Marcoulides and Yuan (2017) have proposed the first inferential test of SEM fit in many years: an equivalence test adaptation of the RMSEA and CFI indices (i.e., RMSEAt and CFIt). However, the ability of this equivalence testing approach to accurately judge acceptable and unacceptable model fit has not been empirically tested. This fully crossed Monte Carlo simulation evaluated the accuracy of equivalence testing combining many of the same independent variable (IV) conditions used in previous fit index simulation studies, including sample size (N = 100-1,000), model specification (correctly specified or misspecified), model type (confirmatory factor analysis [CFA], path analysis, or SEM), number of variables analyzed (low or high), data distribution (normal or skewed), and missing data (none, 10%, or 25%). Results show equivalence testing performs rather inconsistently and unreliably across IV conditions, with acceptable or unacceptable RMSEAt and CFIt model fit index values often being contingent on complex interactions among conditions. Proportional z-tests and logistic regression analyses indicated that equivalence tests of model fit are problematic under multiple conditions, especially those where models are mildly misspecified. Recommendations for researchers are offered, but with the provision that they be used with caution until more research and development is available. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助贪玩阑香采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
Jack发布了新的文献求助10
1秒前
Carl完成签到 ,获得积分10
1秒前
小欢完成签到,获得积分10
1秒前
一坛完成签到 ,获得积分10
1秒前
小Y应助小虫子采纳,获得20
1秒前
lll完成签到,获得积分10
1秒前
丘比特应助自然盼旋采纳,获得10
2秒前
2秒前
火花完成签到,获得积分10
3秒前
研友_Z33zkZ发布了新的文献求助10
3秒前
九日完成签到,获得积分10
3秒前
3秒前
Felix完成签到,获得积分10
3秒前
4秒前
佳无夜完成签到,获得积分10
4秒前
4秒前
小小小发布了新的文献求助30
4秒前
4秒前
里lilili完成签到,获得积分10
5秒前
N维发布了新的文献求助10
5秒前
Liu完成签到,获得积分10
5秒前
清脆大门完成签到,获得积分10
5秒前
5秒前
Raki完成签到,获得积分10
5秒前
怡然白竹完成签到 ,获得积分10
6秒前
sube完成签到,获得积分10
6秒前
6秒前
CodeCraft应助21采纳,获得30
6秒前
春风完成签到,获得积分10
6秒前
6秒前
Miner完成签到,获得积分10
6秒前
Lucas应助时间管理啊鲲采纳,获得10
6秒前
科研通AI6应助WEIDERR采纳,获得10
7秒前
汤圆完成签到 ,获得积分10
7秒前
自由凌丝完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402166
求助须知:如何正确求助?哪些是违规求助? 4520720
关于积分的说明 14081778
捐赠科研通 4434524
什么是DOI,文献DOI怎么找? 2434397
邀请新用户注册赠送积分活动 1426632
关于科研通互助平台的介绍 1405383