Predicting renal function recovery and short-term reversibility among acute kidney injury patients in the ICU: comparison of machine learning methods and conventional regression

医学 急性肾损伤 肾功能 期限(时间) 重症监护医学 回归 肌酐 肾病科 内科学 心脏病学 统计 数学 量子力学 物理
作者
Xiujuan Zhao,Yunwei Lu,Shu Li,Fuzheng Guo,Haiyan Xue,Lilei Jiang,Zhenzhou Wang,Chong Zhang,Wenfei Xie,Fengxue Zhu
出处
期刊:Renal Failure [Taylor & Francis]
卷期号:44 (1): 1327-1338 被引量:22
标识
DOI:10.1080/0886022x.2022.2107542
摘要

Acute kidney injury (AKI) is one of the most frequent complications of critical illness. We aimed to explore the predictors of renal function recovery and the short-term reversibility after AKI by comparing logistic regression with four machine learning models.We reviewed patients who were diagnosed with AKI in the MIMIC-IV database between 2008 and 2019. Recovery from AKI within 72 h of the initiating event was typically recognized as the short-term reversal of AKI. Conventional logistic regression and four different machine algorithms (XGBoost algorithm model, Bayesian networks [BNs], random forest [RF] model, and support vector machine [SVM] model) were used to develop and validate prediction models. The performance measures were compared through the area under the receiver operating characteristic curve (AU-ROC), calibration curves, and 10-fold cross-validation.A total of 12,321 critically ill adult AKI patients were included in our analysis cohort. The renal function recovery rate after AKI was 67.9%. The maximum and minimum serum creatinine (SCr) within 24 h of AKI diagnosis, the minimum SCr within 24 and 12 h, and antibiotics usage duration were independently associated with renal function recovery after AKI. Among the 8364 recovered patients, the maximum SCr within 24 h of AKI diagnosis, the minimum Glasgow Coma Scale (GCS) score, the maximum blood urea nitrogen (BUN) within 24 h, vasopressin and vancomycin usage, and the maximum lactate within 24 h were the top six predictors for short-term reversibility of AKI. The RF model presented the best performance for predicting both renal functional recovery (AU-ROC [0.8295 ± 0.01]) and early recovery (AU-ROC [0.7683 ± 0.03]) compared with the conventional logistic regression model.The maximum SCr within 24 h of AKI diagnosis was a common independent predictor of renal function recovery and the short-term reversibility of AKI. The RF machine learning algorithms showed a superior ability to predict the prognosis of AKI patients in the ICU compared with the traditional regression models. These models may prove to be clinically helpful and can assist clinicians in providing timely interventions, potentially leading to improved prognoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
5秒前
那些兔儿完成签到 ,获得积分0
5秒前
buerzi完成签到,获得积分10
9秒前
LaixS完成签到,获得积分10
15秒前
芙瑞完成签到 ,获得积分10
16秒前
要笑cc完成签到,获得积分10
17秒前
庄怀逸完成签到 ,获得积分10
19秒前
yan完成签到,获得积分10
19秒前
宣宣宣0733完成签到,获得积分10
19秒前
MHCL完成签到 ,获得积分10
19秒前
nini完成签到,获得积分10
20秒前
顽固分子完成签到 ,获得积分10
21秒前
胡质斌完成签到,获得积分10
21秒前
常常完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
fiona完成签到,获得积分10
24秒前
平淡访冬完成签到 ,获得积分10
26秒前
李成恩完成签到 ,获得积分10
27秒前
QIANGYI完成签到 ,获得积分10
29秒前
onevip完成签到,获得积分0
33秒前
xmhxpz完成签到,获得积分10
36秒前
38秒前
燕晓啸完成签到 ,获得积分0
40秒前
41秒前
8D完成签到,获得积分10
42秒前
量子星尘发布了新的文献求助10
43秒前
Ezio_sunhao完成签到,获得积分10
46秒前
行云流水完成签到,获得积分10
47秒前
49秒前
runtang完成签到,获得积分10
52秒前
53秒前
许愿完成签到 ,获得积分10
55秒前
56秒前
Aaron完成签到,获得积分10
59秒前
YAN完成签到 ,获得积分10
59秒前
狮子座发布了新的文献求助10
1分钟前
赘婿应助一个小胖子采纳,获得10
1分钟前
Cai完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
Plasmonics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3868049
求助须知:如何正确求助?哪些是违规求助? 3410297
关于积分的说明 10667126
捐赠科研通 3134538
什么是DOI,文献DOI怎么找? 1729156
邀请新用户注册赠送积分活动 833189
科研通“疑难数据库(出版商)”最低求助积分说明 780620