Semisupervised Hyperspectral Image Classification Using a Probabilistic Pseudo-Label Generation Framework

判别式 人工智能 计算机科学 模式识别(心理学) 概率逻辑 高光谱成像 一般化 特征(语言学) 上下文图像分类 特征向量 机器学习 深度学习 深层神经网络 图像(数学) 数学 哲学 数学分析 语言学
作者
Majid Seydgar,Shahryar Rahnamayan,Pedram Ghamisi,Azam Asilian Bidgoli
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:21
标识
DOI:10.1109/tgrs.2022.3195924
摘要

Deep neural networks (DNNs) show impressive performance for hyperspectral image (HSI) classification when abundant labeled samples are available. The problem is that HSI sample annotation is extremely costly and the budget for this task is usually limited. To reduce the reliance on labeled samples, deep semi-supervised learning (SSL), which jointly learns from labeled and unlabeled samples, has been introduced in the literature. However, learning robust and discriminative features from unlabeled data is a challenging task due to various noise effects and ambiguity of unlabeled samples. As a result, recent advances are constrained, mainly in the pre-training or warm-up stage. In this paper, we propose a deep probabilistic framework to generate reliable pseudo labels to explicitly learn discriminative features from unlabeled samples. The generated pseudo labels of our proposed framework can be fed to various DNNs to improve their generalization capacity. Our proposed framework takes only 10 labeled samples per class to represent the label set as an uncertainty-aware distribution in the latent space. The pseudo labels are then generated for those unlabeled samples whose feature values match the distribution with high probability. By performing extensive experiments on four publicly available datasets, we show that our framework can generate reliable pseudo labels to significantly improve the generalization capacity of several state-of-the-art DNNs. In addition, we introduce a new DNN for HSI classification that demonstrates outstanding accuracy results in comparison with its rivals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
Azyyyy完成签到,获得积分10
1秒前
3秒前
SN发布了新的文献求助10
4秒前
Summer发布了新的文献求助30
4秒前
墨墨完成签到,获得积分10
4秒前
Billy应助QH采纳,获得30
5秒前
XIN完成签到,获得积分10
5秒前
西瓜完成签到 ,获得积分10
5秒前
a7489420发布了新的文献求助10
5秒前
5秒前
FashionBoy应助feng采纳,获得10
5秒前
墨墨发布了新的文献求助10
6秒前
7秒前
俞凡白完成签到,获得积分10
7秒前
结实的泥猴桃完成签到 ,获得积分10
7秒前
8秒前
chen举报从容的夜梦求助涉嫌违规
8秒前
XIN发布了新的文献求助10
9秒前
JamesPei应助SQSO采纳,获得10
9秒前
科研通AI5应助梨理栗采纳,获得10
9秒前
10秒前
周宇飞完成签到 ,获得积分10
11秒前
立秋呀完成签到,获得积分10
11秒前
12秒前
13秒前
YUNJIE完成签到,获得积分10
13秒前
调皮冰旋发布了新的文献求助10
14秒前
猫抓板发布了新的文献求助10
14秒前
lalalal完成签到,获得积分10
15秒前
积极的忆曼完成签到,获得积分10
15秒前
木子晨完成签到 ,获得积分10
15秒前
sqf1209发布了新的文献求助10
16秒前
16秒前
善学以致用应助张emo采纳,获得10
16秒前
氢氦锂皮皮完成签到,获得积分10
16秒前
17秒前
如果发布了新的文献求助10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812498
求助须知:如何正确求助?哪些是违规求助? 3357038
关于积分的说明 10384989
捐赠科研通 3074237
什么是DOI,文献DOI怎么找? 1688682
邀请新用户注册赠送积分活动 812296
科研通“疑难数据库(出版商)”最低求助积分说明 766986