光催化
材料科学
催化作用
光催化分解水
氢
密度泛函理论
分解水
纳米技术
化学工程
钛酸酯
制氢
化学物理
光化学
计算化学
化学
陶瓷
冶金
工程类
有机化学
生物化学
作者
Hayoon Jung,Gihoon Cha,Hyesung Kim,Johannes Will,Xin Zhou,Zdeňěk Baďura,Giorgio Zoppellaro,Ana S. Dobrota,Natalia V. Skorodumova,Igor A. Pašti,Bidyut Bikash Sarma,Jochen Schmidt,Erdmann Spiecker,Josef Breu,Patrik Schmuki
出处
期刊:Small
[Wiley]
日期:2025-06-02
卷期号:21 (29): e2502428-e2502428
被引量:4
标识
DOI:10.1002/smll.202502428
摘要
Abstract The stabilization of single‐atom catalysts on semiconductor substrates is pivotal for advancing photocatalysis. TiO 2 , a widely employed photocatalyst, typically stabilizes single atoms at oxygen vacancies—sites that are accessible but prone to agglomeration under illumination. Here, we demonstrate that cation vacancies in Ti‐deficient TiO 2 nanosheets provide highly stable anchoring sites for Pt single atoms, enabling persistent photocatalytic hydrogen evolution. Ultrathin TiO 2 nanosheets with intrinsic Ti 4+ vacancies are synthesized via lepidocrocite‐type titanate delamination and Pt single atoms are selectively trapped within these vacancies through a simple immersion process. The resulting Pt‐decorated nanosheets exhibit superior photocatalytic hydrogen evolution performance, outperforming both Pt nanoparticle‐loaded nanosheets and benchmarked Pt single‐atom catalysts on P25. Crucially, Pt atoms anchored at Ti 4+ vacancies display remarkable resistance to light‐induced agglomeration, a key limitation of conventional single‐atom photocatalysts. Density functional theory calculations reveal that Pt incorporation into Ti 4+ vacancies is highly thermodynamically favorable and optimizes hydrogen adsorption energetics for enhanced catalytic activity. This work highlights the critical role of cation defect engineering in stabilizing single‐atom co‐catalysts and advancing the efficiency and durability of photocatalytic hydrogen evolution.
科研通智能强力驱动
Strongly Powered by AbleSci AI