PySSA for Windows: End-User Protein Structure Prediction and Visual Analysis with ColabFold and PyMOL

计算机科学 计算机图形学(图像) 人工智能 计算生物学 生物
作者
Hannah Kullik,Urban Martin,Jonas Schaub,Angelika Loidl-Stahlhofen,Achim Zielesny
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00797
摘要

PySSA (Python rich client for visual protein Sequence to Structure Analysis) for Windows is a comfortable open Graphical User Interface (GUI) application combining the protein sequence to structure prediction capabilities of ColabFold with the open-source variant of the molecular structure visualization and analysis system PyMOL to make both available to the scientific end-user. PySSA enables the creation and sharing of workflow projects that comprise defined protein 3D structure predictions from their amino acid sequence, protein 3D structure alignments, as well as their visual analysis with distance diagrams or hotspot inspection. All operations can be conveniently performed by scientists without specialized computer skills or even programming knowledge on their local Windows computers, without the need for powerful GPU hardware. Thus, PySSA can help make protein structure prediction more accessible for end-users in scientific research areas like protein chemistry or molecular biology. In addition, the application is well-suited for educational purposes due to its user-friendliness and low learning curve. PySSA is openly available on GitHub, alongside a convenient installer executable for the Windows operating system: https://urban233.github.io/PySSA/install.html. To demonstrate its capabilities, the usage of PySSA in a protein mutation study on the protein drug Bone Morphogenetic Protein 2 (BMP2) is described: the structure prediction results indicate that the previously reported BMP2-2Hep-7M mutant, which is intended to be less prone to aggregation, does not exhibit significant spatial rearrangements of amino acid residues interacting with the receptor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
hahamissyu应助科研通管家采纳,获得20
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
zyy6657完成签到,获得积分10
3秒前
Dawn发布了新的文献求助10
3秒前
4秒前
6秒前
杜小鱼发布了新的文献求助10
8秒前
8秒前
勤恳的画笔完成签到 ,获得积分10
10秒前
阿童木完成签到,获得积分10
10秒前
清秀的靖琪完成签到,获得积分10
11秒前
12秒前
12秒前
喂仔仔完成签到,获得积分10
13秒前
xiaonanzi1发布了新的文献求助30
14秒前
15秒前
16秒前
16秒前
bulubulubulubule完成签到,获得积分10
16秒前
ccai完成签到,获得积分10
17秒前
一介草民谢尔比完成签到,获得积分10
18秒前
18秒前
labill发布了新的文献求助10
19秒前
李健应助杨文采纳,获得10
20秒前
21秒前
22秒前
galaxy完成签到 ,获得积分10
22秒前
桃溪漫漫发布了新的文献求助10
23秒前
mia完成签到,获得积分10
24秒前
25秒前
27秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907805
求助须知:如何正确求助?哪些是违规求助? 3453653
关于积分的说明 10876359
捐赠科研通 3179586
什么是DOI,文献DOI怎么找? 1756553
邀请新用户注册赠送积分活动 849630
科研通“疑难数据库(出版商)”最低求助积分说明 791667