Tumour habitat-based radiomics analysis enhances the ability to predict prostate cancer aggressiveness with biparametric MRI-derived features

无线电技术 前列腺癌 前列腺 医学 癌症 磁共振成像 肿瘤科 内科学 放射科
作者
Mengjuan Li,Ning Ding,Shengnan Yin,Yan Lü,Yiding Ji,Long Jin
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fonc.2025.1504132
摘要

The purpose of this study was to develop three predictive models utilising clinical factors, radiomics features, and habitat features, to distinguish between nonclinically significant prostate cancer (csPCa) and clinically significant PCa (non-csPCa) on the basis of biparametric MRI (bp-MRI). A total of 175 patients were enrolled, including 134 individuals with csPCa and 41 with non-csPCa. The clinical model was developed using optimal predictive factors obtained from univariable logistic regression and modelled through a random forest approach. Image acquisition and segmentation were performed first in the creation of both the radiomics model and the habitat model. The K-means clustering algorithm was then used exclusively for habitat generation in the development of the habitat model. Finally, feature selection and model construction were performed for both models. Model comparison and diagnostic efficacy assessment were conducted through receiver operating characteristic curve analysis, decision curve analysis (DCA), and calibration curve analysis. The habitat model outperformed both the radiomics model and the clinical model in distinguishing csPCa from non-csPCa patients. The AUC values of the habitat model in the training and test sets were 0.99 and 0.93, respectively. Furthermore, DCA and the calibration curves highlighted the superior clinical utility and greater predictive accuracy of the habitat model in comparison with the other two models. We developed a habitat-based radiomics model with a greater ability to distinguish between csPCa and non-csPCa on the basis of bp-MRI than a traditional radiomics model and clinical model. This introduces a novel approach for assessing the heterogeneity of PCa and offers urologists a quantitative, noninvasive method for preoperatively evaluating the aggressiveness of PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碎碎念完成签到,获得积分10
1秒前
1秒前
小蘑菇应助Sunshine采纳,获得10
1秒前
2秒前
浮游应助或许度采纳,获得10
2秒前
早点睡觉发布了新的文献求助10
3秒前
典雅飞飞发布了新的文献求助10
3秒前
3秒前
3秒前
bacteria完成签到,获得积分10
4秒前
4秒前
4秒前
唐Doctor发布了新的文献求助10
5秒前
而风不止发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
lvlijun完成签到,获得积分20
6秒前
盐先生完成签到 ,获得积分10
7秒前
落寞觅山完成签到 ,获得积分10
7秒前
碎碎念发布了新的文献求助10
7秒前
7秒前
tiddler完成签到,获得积分10
8秒前
1111发布了新的文献求助10
8秒前
Ava应助空巢小黄人采纳,获得10
8秒前
8秒前
9秒前
深情安青应助xxb采纳,获得10
9秒前
昊康好发布了新的文献求助10
9秒前
10秒前
10秒前
周周不喝粥关注了科研通微信公众号
10秒前
FFF发布了新的文献求助10
10秒前
成就寄瑶发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
柒染发布了新的文献求助10
11秒前
淡蓝时光发布了新的文献求助10
11秒前
Chanbaii完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286706
求助须知:如何正确求助?哪些是违规求助? 4439351
关于积分的说明 13821187
捐赠科研通 4321274
什么是DOI,文献DOI怎么找? 2371784
邀请新用户注册赠送积分活动 1367335
关于科研通互助平台的介绍 1330812