No-regret path planning for temporal logic tasks in partially-known environments

后悔 路径(计算) 计算机科学 运动规划 人工智能 人机交互 机器人 机器学习 程序设计语言
作者
Jianing Zhao,Keyi Zhu,Mingyang Feng,Shaoyuan Li,Xiang Yin
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:44 (9): 1526-1552
标识
DOI:10.1177/02783649251315758
摘要

In this paper, we investigate the graph-based robot path planning problem for high-level specifications described by co-safe linear temporal logic (scLTL) formulae. Our focus is on scenarios where the map geometry of the workspace is only partially-known . Specifically, we assume the existence of unknown regions, where the robot lacks prior knowledge of their successor regions unless it physically reaches these areas. In contrast to the standard non-deterministic synthesis approach that optimizes the worst-case cost, in the paper, we propose using regret as the metric for planning in such partially-known environments. Regret measures the difference between the actual cost incurred and the best-response cost the robot could have achieved if it were aware of the actual environment from the start. We present a formal model for this problem setting and develop an efficient algorithm to find an optimal strategy in the sense that it meets the scLTL specification while minimizing the regret of the strategy. Our approach provides a quantitative method for evaluating the trade-off between exploration and non-exploration, rather than relying on the heuristic determinations used in many existing works. Case studies on firefighting and collaborative robots are provided to illustrate the effectiveness of our framework. Furthermore, we conduct numerical experiments on a large number of randomly generated systems and compare the performance of the regret-based strategy with other path planning strategies. The experimental results indicate that regret is a highly meaningful metric for path planning in partially-unknown environments, especially in cases where no probabilistic a priori knowledge is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhhhl发布了新的文献求助10
2秒前
clwlf发布了新的文献求助10
3秒前
old杜发布了新的文献求助10
4秒前
wanci应助迷路的藏鸟采纳,获得10
6秒前
晶晶妹妹完成签到,获得积分10
7秒前
8秒前
13秒前
新明发布了新的文献求助10
13秒前
CipherSage应助外向的小松鼠采纳,获得10
17秒前
曹志伟发布了新的文献求助10
17秒前
淡然亦云发布了新的文献求助10
18秒前
18秒前
无奈的鞋子完成签到 ,获得积分10
20秒前
20秒前
哈哈完成签到,获得积分10
22秒前
娜娜发布了新的文献求助10
22秒前
24秒前
24秒前
科研通AI5应助神勇秋白采纳,获得10
25秒前
搜集达人应助爬不起来采纳,获得10
27秒前
finale71完成签到,获得积分10
27秒前
27秒前
27秒前
Millie_Ho完成签到,获得积分10
29秒前
S.S.N发布了新的文献求助10
29秒前
31秒前
充电宝应助可爱deyi采纳,获得10
31秒前
樂酉完成签到,获得积分10
32秒前
瘦瘦的艳发布了新的文献求助10
32秒前
32秒前
踏实谷蓝发布了新的文献求助10
32秒前
翟小灰发布了新的文献求助10
33秒前
兰兰猪头发布了新的文献求助10
34秒前
afeifei完成签到,获得积分10
37秒前
37秒前
樂酉发布了新的文献求助10
38秒前
FashionBoy应助hui采纳,获得10
38秒前
浮游应助神勇秋白采纳,获得10
38秒前
39秒前
39秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207406
求助须知:如何正确求助?哪些是违规求助? 4385353
关于积分的说明 13656706
捐赠科研通 4243935
什么是DOI,文献DOI怎么找? 2328474
邀请新用户注册赠送积分活动 1326166
关于科研通互助平台的介绍 1278375