Reduce-then-Optimize for the Fixed-Charge Transportation Problem

固定费用 运输工程 电荷(物理) 数学优化 计算机科学 运筹学 工程类 数学 物理 量子力学 分子物理学
作者
Caroline Spieckermann,Stefan Minner,Maximilian Schiffer
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0407
摘要

Research on addressing combinatorial optimization (CO) problems with machine learning (ML) is thriving with a strong focus on replacing exact but slow solvers with faster ML oracles. However, developing accurate and generalizable predictors remains challenging. We investigate a different paradigm, called reduce-then-optimize, that uses ML to reduce the problem complexity for a subsequent CO solver by predicting a relevant subset of variables. We apply this paradigm to the fixed-charge transportation problem (FCTP), an important problem class in logistics and transportation. To obtain a high-quality and problem size-agnostic predictor, we employ a tailored bipartite graph neural network (GNN). We evaluate the performance of our reduce-then-optimize pipeline on various FCTP benchmark data sets to analyze the impact of different instance characteristics, such as the supply-demand ratio or the predominance of the fixed costs, on the problem difficulty and predictability. This includes FCTP variants with edge capacities, fixed-step costs, and blending constraints. The GNN shows good prediction and generalization capabilities that translate into high-quality solutions across all data sets with optimality gaps below 1%, decreasing runtimes of a state-of-the-art mixed-integer linear programming by 80%–95%. When runtimes are limited, the problem reduction provides an effective reduction of the search space, which leads to better solutions in comparison with solving the full problem. Similarly, we systematically improve the solution quality and convergence of two established meta-heuristics by applying our reduce-then-optimize pipeline. As the GNN-based reduce-then-optimize pipeline can be easily adapted to support additional constraints and objectives, it constitutes a flexible and robust solution approach for FCTP solving in practice. Funding: This research was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) as part of the research group Advanced Optimization in a Networked Economy [Grant GRK2201/277991500]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0407 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lynn发布了新的文献求助10
3秒前
自然完成签到,获得积分10
4秒前
谦让成协完成签到,获得积分10
7秒前
菜芽君完成签到,获得积分10
8秒前
路寻完成签到,获得积分10
9秒前
追逐的疯完成签到,获得积分10
9秒前
10秒前
诸葛烤鸭完成签到,获得积分10
10秒前
情怀应助pophoo采纳,获得10
11秒前
11秒前
14秒前
喵喵完成签到 ,获得积分10
15秒前
15秒前
味子橘完成签到 ,获得积分10
16秒前
gxh发布了新的文献求助10
16秒前
17秒前
立军发布了新的文献求助10
17秒前
andy发布了新的文献求助10
17秒前
song完成签到 ,获得积分10
17秒前
koukousang完成签到,获得积分10
18秒前
鲜艳的皮皮虾完成签到 ,获得积分10
20秒前
21秒前
笨笨忘幽发布了新的文献求助10
21秒前
Lazarus_x完成签到,获得积分10
22秒前
物质尽头完成签到 ,获得积分10
22秒前
独狼完成签到 ,获得积分10
25秒前
BettyNie完成签到 ,获得积分10
25秒前
燕聪聪发布了新的文献求助30
25秒前
电闪完成签到,获得积分10
26秒前
赘婿应助德州老农采纳,获得10
28秒前
甜甜甜完成签到 ,获得积分10
29秒前
KCl完成签到 ,获得积分10
31秒前
34秒前
学术老6完成签到 ,获得积分10
35秒前
35秒前
海带先生完成签到,获得积分10
36秒前
无奈的惜蕊完成签到,获得积分10
36秒前
大模型应助nav采纳,获得10
38秒前
科研通AI2S应助立军采纳,获得10
40秒前
科研通AI5应助立军采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734