PanDiff: A Novel Pansharpening Method Based on Denoising Diffusion Probabilistic Model

计算机科学 多光谱图像 全色胶片 人工智能 图像融合 图像分辨率 稳健性(进化) 计算机视觉 模式识别(心理学) 概率逻辑 融合 图像(数学) 化学 基因 生物化学 语言学 哲学
作者
Qingyan Meng,Wenxu Shi,Sijia Li,Linlin Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:19
标识
DOI:10.1109/tgrs.2023.3279864
摘要

Pansharpening is a crucial image processing technique for numerous remote sensing downstream tasks, aiming to recover high spatial resolution multispectral (HRMS) images by fusing high spatial resolution panchromatic (PAN) images and low spatial resolution multispectral (LRMS) images. Most current mainstream pansharpening fusion frameworks directly learn the mapping relationships from PAN and LRMS images to HRMS images by extracting key features. However, we propose a novel pansharpening method based on the denoising diffusion probabilistic model (DDPM) called PanDiff, which learns the data distribution of the difference maps (DM) between HRMS and interpolated MS (IMS) images from a new perspective. Specifically, PanDiff decomposes the complex fusion process of PAN and LRMS images into a multi-step Markov process, and the U-Net is employed to reconstruct each step of the process from random Gaussian noise. Notably, the PAN and LRMS images serve as the injected conditions to guide the U-Net in PanDiff, rather than being the fusion objects as in other pansharpening methods. Furthermore, we propose a modal intercalibration module (MIM) to enhance the guidance effect of the PAN and LRMS images. The experiments are conducted on a freely available benchmark dataset, including GaoFen-2, QuickBird, and WorldView-3 images. The experimental results from the fusion and generalization tests effectively demonstrate the outstanding fusion performance and high robustness of PanDiff. Fig. 1 depicts the results of the proposed method performed on various scenes. Additionally, the ablation experiments confirm the rationale behind PanDiff’s construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行道吉安完成签到,获得积分10
1秒前
西音发布了新的文献求助10
1秒前
1秒前
华仔应助Tico采纳,获得10
3秒前
3秒前
科研通AI5应助祯果粒采纳,获得10
4秒前
科研木头人完成签到 ,获得积分10
5秒前
6秒前
7秒前
生动的战斗机完成签到,获得积分10
8秒前
夸父完成签到,获得积分10
8秒前
火星上的蜡烛完成签到,获得积分10
8秒前
JamesPei应助5430采纳,获得200
8秒前
廖紊完成签到,获得积分10
8秒前
jmchen发布了新的文献求助10
9秒前
因一发布了新的文献求助10
9秒前
西音完成签到,获得积分10
9秒前
王小新完成签到,获得积分10
9秒前
bodhi完成签到,获得积分10
10秒前
跳跃绮山发布了新的文献求助20
10秒前
打打应助_ban采纳,获得10
10秒前
cdercder应助kingwill采纳,获得30
10秒前
SciGPT应助夜已深采纳,获得10
10秒前
Totoro发布了新的文献求助10
11秒前
empty发布了新的文献求助10
14秒前
李健的小迷弟应助baomingqiu采纳,获得10
14秒前
16秒前
佚名完成签到 ,获得积分10
17秒前
因一完成签到,获得积分10
19秒前
顾矜应助Os1采纳,获得10
20秒前
很多奶油发布了新的文献求助10
21秒前
跳跃绮山完成签到,获得积分10
21秒前
lee发布了新的文献求助10
22秒前
22秒前
meng发布了新的文献求助10
22秒前
依地酸二钠完成签到,获得积分10
23秒前
脑洞疼应助坚强紫山采纳,获得10
24秒前
XX完成签到 ,获得积分10
25秒前
25秒前
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225