Artificial intelligence of things (AIoT) data acquisition based on graph neural networks: A systematical review

计算机科学 人工智能 杠杆(统计) 深度学习 机器学习 图形 数据采集 人工神经网络 卷积神经网络 稳健性(进化) 理论计算机科学 生物化学 基因 操作系统 化学
作者
Yufeng Wang,Bo Zhang,Jun Ma,Qun Jin
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:35 (23)
标识
DOI:10.1002/cpe.7827
摘要

Summary The power of artificial intelligence of things (AIoT) stems from adapting machine learning (ML) and artificial intelligence (AI) models into abundant intelligent IoT fields, based on a large data stream with different formats, sizes, and timestamps generated by massive numbers of heterogeneous sensors. On the one hand, data acquisition is the fundamental basis for any AIoT systems, but data sensed by massive IoT devices may be noisy and even contain adversarial samples. On the other hand, ensuring the efficiency and robustness in data acquisition is vitally important for data‐driven ML and AI. Recently, besides perceiving ability, the literature has witnessed great development of empowering things with learning and reasoning ability through deep learning models, including recurrent neural networks (RNNs) and/or convolutional neural network (CNNs). However, the existing works have one significant weakness: fail to explicitly leverage the geospatial implications and latent connections among sensors for high‐quality data acquisition and quality control. Graphs are intrinsically suitable for representing the dependencies and inter‐relationships between AIoT data sensing devices. Due to the ability of capturing the complex interactive relationships between nodes and producing high‐level representations of the graph input, graph neural networks (GNNs) have exploded onto various ML and AI fields, to learn from graph‐structured data. Our review covers the latest progresses in GNN for the fundamental atomic task of data acquisition in AIoT. Instead of surveying the abundant GNN schemes in vertically various IoT sensing applications, this paper systematically reviews the horizontal infrastructure that all AIoT fields should have, that is, AIoT data acquisition, based on GNN and other related emerging AI factors. Our contributions include the following aspects: Provide the latest progresses in GNN for the horizontal task of data acquisition in AIoT, propose the unified GNN pipeline based on encoder–decoder paradigm, and systematically categorize and summarize the emerging technologies helpful to address the issues in AIoT data acquisition, especially the noisy and adversarial data, and point out some future directions about GNN‐based AIoT data acquisition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
wyx发布了新的文献求助10
1秒前
董凡侨发布了新的文献求助10
1秒前
不想干活应助XiaolongYang采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
Owen应助reading gene采纳,获得10
3秒前
iOhyeye23发布了新的文献求助10
3秒前
3秒前
蝉蝉完成签到 ,获得积分10
4秒前
sun发布了新的文献求助10
4秒前
云海老完成签到,获得积分10
5秒前
瞬间完成签到 ,获得积分10
5秒前
香蕉觅云应助onesail采纳,获得10
5秒前
6秒前
6秒前
正直夜安发布了新的文献求助30
6秒前
6秒前
wyx完成签到,获得积分20
8秒前
8秒前
yueyueyue发布了新的文献求助10
9秒前
资山雁完成签到 ,获得积分10
9秒前
10秒前
马博的司机完成签到,获得积分10
12秒前
葵魁完成签到,获得积分10
12秒前
朴实凝雁发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
司音发布了新的文献求助10
13秒前
SciGPT应助keyan采纳,获得10
15秒前
五虎完成签到,获得积分10
15秒前
风清扬应助sun采纳,获得10
16秒前
元锦程完成签到,获得积分10
18秒前
乐观无心完成签到,获得积分10
18秒前
董凡侨完成签到,获得积分10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212142
求助须知:如何正确求助?哪些是违规求助? 3746321
关于积分的说明 11788009
捐赠科研通 3414145
什么是DOI,文献DOI怎么找? 1873474
邀请新用户注册赠送积分活动 927898
科研通“疑难数据库(出版商)”最低求助积分说明 837317