Behavior analysis of search and rescue operations employing human-machine teaming

机器人 搜救 学徒制 凤凰 海军 竞赛(生物学) 事件(粒子物理) 运筹学 人工智能 计算机科学 工程类 机器人学 航空学 形势意识 模拟 法学 地理 政治学 生态学 物理 考古 大都市区 量子力学 航空航天工程 生物
作者
Michael Sagos,Lawrence Mattson,Vishal M. Patel,Kristin Giammarco,Paul N. Dyer,Michael Novitzky,J.R. James,Robert Semmens,Michael P. Collins,Stuart Harshbarger
标识
DOI:10.1117/12.2663286
摘要

During the summer of 2022, the United States Military Academy hosted a robotics apprenticeship program during which interns programmed maritime robots to move autonomously. By the end of the apprenticeship, the robots were able to compete against each other in a force-on-force competition based on capture-the-flag game rules. This game mimics tactics performed in military operations and is used for studying new military tactics and operations involving humans and robots working with each other and in human-robot teams. The live tests were planned using Monterey Phoenix,1 a Navy-developed language, approach and tool for behavior modeling. Monterey Phoenix was used to generate a set of possible scenarios that could occur during the robot competition based on the game rules and expected conditions. Scenario variants containing search and rescue (SAR) operations were included to help with planning in case of a man overboard or robot malfunction. The analysis in Monterey Phoenix led to the exposure of some new SAR scenario variants that were not previously considered, including: the weather being unsafe but shoreside permitting continued play; two men overboard events happening simultaneously on both teams; SAR is deployed despite not being signaled to; and lastly one team has a man overboard event but the other team is unaware and continues playing the game. Having a library of these and other possible scenario variants helped the team consider possible causes for their occurrence and avoid or mitigate unwanted outcomes that could arise should they occur during live competition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
fengjingjing发布了新的文献求助10
1秒前
夏果完成签到,获得积分20
3秒前
yu发布了新的文献求助10
3秒前
万能图书馆应助WTaMi采纳,获得10
4秒前
曾金福完成签到,获得积分10
4秒前
5秒前
6秒前
wst完成签到,获得积分10
8秒前
核桃发布了新的文献求助10
8秒前
小蘑菇应助激情的不弱采纳,获得10
10秒前
冰勾板勾完成签到,获得积分10
10秒前
abcd_1067发布了新的文献求助10
11秒前
11秒前
13秒前
13秒前
14秒前
17秒前
核桃发布了新的文献求助10
19秒前
8R60d8应助胖胖谈采纳,获得10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
hhj发布了新的文献求助10
21秒前
21秒前
学术小白two完成签到,获得积分10
22秒前
Hua完成签到 ,获得积分10
22秒前
欢喜恶天发布了新的文献求助10
22秒前
局外人完成签到,获得积分10
22秒前
22秒前
隐形曼青应助宇文宛菡采纳,获得10
23秒前
24秒前
25秒前
核桃发布了新的文献求助10
25秒前
demi2333完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
坚强幼荷完成签到,获得积分10
26秒前
lishuyuan发布了新的文献求助10
26秒前
Ava应助菜就多练采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5792504
求助须知:如何正确求助?哪些是违规求助? 5742060
关于积分的说明 15483133
捐赠科研通 4919732
什么是DOI,文献DOI怎么找? 2648397
邀请新用户注册赠送积分活动 1595769
关于科研通互助平台的介绍 1550537