Artificial Neural Network-Based Predictive Model for Finite Element Analysis of Additive-Manufactured Components

正交异性材料 有限元法 人工神经网络 材料性能 过程(计算) 航空航天 组分(热力学) 机械工程 极限抗拉强度 结构工程 计算机科学 工程类 材料科学 复合材料 机器学习 物理 航空航天工程 操作系统 热力学
作者
Sorin Grozav,Alexandru D. Sterca,Marek Kočiško,Martin Pollák,Vasile Ceclan
出处
期刊:Machines [MDPI AG]
卷期号:11 (5): 547-547 被引量:16
标识
DOI:10.3390/machines11050547
摘要

Additive manufacturing is becoming one of the most utilized tools in an increasing number of fields from Industry 4.0 concepts, engineering, and manufacturing to aerospace and medical applications. One important issue with additive-manufactured components is their orthotropic behaviour where mechanical properties are concerned. This behaviour is due to the layer-by-layer manufacturing process and is particularly hard to predict since it depends on a number of factors, including the manufacturing parameters used during the manufacturing process (speed, temperature, etc.). This study aimed to create and train an artificial neural network-based predictive model using empirical tensile strength data obtained from additive manufactured test parts using the FDM method and PLA material. The predictive model was designed to predict mechanical characteristics for different orientation axis, which were used to set the material properties for finite element analysis. Results indicate a strong correlation between predicted finite element analysis behaviour and real-world tests on additive-manufactured components. The neural network model was trained to an accuracy of ~93% for predicting the mechanical characteristics of 3D-printed PLA material. Using the predicted mechanical characteristics for defining a custom orthotropic material profile in finite element analysis, the simulated failure mode and the behaviour of a complex geometry component agreed with the real-world test.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助俭朴的飞双采纳,获得10
1秒前
六月疏雨应助紫熊采纳,获得10
2秒前
6秒前
cheng完成签到,获得积分10
6秒前
7秒前
semigreen完成签到 ,获得积分10
9秒前
缥缈孤鸿影完成签到 ,获得积分10
9秒前
Dreammy发布了新的文献求助10
10秒前
大模型应助zyy144728采纳,获得10
12秒前
浮游应助来杯冰美式采纳,获得10
12秒前
14秒前
大力的飞莲完成签到,获得积分10
15秒前
18秒前
小二郎应助waitingfor采纳,获得10
21秒前
zyy发布了新的文献求助10
21秒前
23秒前
24秒前
宅多点应助lzj采纳,获得10
24秒前
Dreammy完成签到,获得积分10
28秒前
001发布了新的文献求助10
29秒前
30秒前
30秒前
31秒前
Zx_1993应助科研通管家采纳,获得20
32秒前
大模型应助科研通管家采纳,获得10
32秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
32秒前
浮游应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
大龙哥886应助科研通管家采纳,获得10
32秒前
WANG应助科研通管家采纳,获得10
32秒前
老福贵儿应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
今后应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得30
32秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
33秒前
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557614
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668844
捐赠科研通 4584126
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523