EcAGL enhances cadmium tolerance in transgenic Arabidopsis thaliana through inhibits cadmium transport and ethylene synthesis pathway

拟南芥 拟南芥 转基因 细胞生物学 生物 基因表达 生物化学 基因 突变体
作者
Dan Zuo,Mingyang Hu,Wenwen Zhou,Fangping Lei,Jingwen Zhao,Lei Gu
出处
期刊:Plant Physiology and Biochemistry [Elsevier BV]
卷期号:201: 107900-107900 被引量:14
标识
DOI:10.1016/j.plaphy.2023.107900
摘要

Cadmium (Cd) is a highly toxic heavy metal with severe impacts on plant growth and development. Although a multitude of plants have acquired strong tolerance to Cd stress, the underlying molecular mechanism has not been fully elucidated. Here, we identified a Agamous-like MADS-box gene (EcAGL) from Erigeron canadensis. The expression of EcAGL was obviously raised under Cd stress and subcellular localization indicated EcAGL was localized in the nucleus. Overexpression of EcAGL in Arabidopsis thaliana showed marked alleviation of the Cd-induced reduction; Compared to wild-type lines, the antioxidant enzymes activities were increased in EcAGL overexpressing lines under Cd stress. The roots Cd content of transgenic lines was not different with the control plants, whereas significant reduction in shoots Cd content was detected in the transgenic lines, indicating that this gene can enhance Cd tolerance by reducing Cd accumulation in Arabidopsis. Moreover, the expression levels of heavy metal ATPase (AtHMA2 and AtHMA3) and natural resistance-associated macrophage protein (AtNRAMP5) genes in the root of transgenic lines decreased under Cd stress, indicating that EcAGL likely hampered the Cd transport pathway. Gene expression profiles in shoot showed that EcAGL likely modulates the expression of 1-aminocyclopropane-1-carboxylic acid synthase gene (AtACS2), which is involved in the ethylene synthesis pathway, to strengthen the tolerance to Cd. Collectively, these results indicate that EcAGL plays a significant role in regulating Cd tolerance in E. canadensis by alleviating oxidative stress, Cd transport and affecting the ethylene biosynthesis pathway, providing new insight into the molecular mechanism underlying plant tolerance to Cd stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHYYAA完成签到,获得积分10
4秒前
Orange应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
HHYYAA发布了新的文献求助10
8秒前
李健的小迷弟应助HHYYAA采纳,获得10
11秒前
smin完成签到,获得积分10
12秒前
Jeamren完成签到,获得积分10
13秒前
风趣丝发布了新的文献求助10
13秒前
zz完成签到,获得积分10
14秒前
黑猫小苍完成签到,获得积分10
14秒前
沉静寒云完成签到 ,获得积分10
14秒前
babyhead完成签到,获得积分10
18秒前
赘婿应助wowser采纳,获得10
21秒前
Orange应助韩hqf采纳,获得10
23秒前
随风完成签到,获得积分10
25秒前
26秒前
Bob完成签到,获得积分10
27秒前
JHcHuN完成签到,获得积分10
28秒前
29秒前
29秒前
Lucas应助黑猫小苍采纳,获得10
30秒前
JHcHuN发布了新的文献求助10
31秒前
zzf完成签到,获得积分10
31秒前
萧水白完成签到,获得积分10
31秒前
wowser发布了新的文献求助10
34秒前
zzf发布了新的文献求助10
34秒前
meimale完成签到,获得积分10
37秒前
雪白的紫翠完成签到 ,获得积分10
38秒前
39秒前
zhl完成签到,获得积分10
41秒前
现代的紫霜完成签到,获得积分10
43秒前
喜悦香萱发布了新的文献求助10
43秒前
秋风今是完成签到 ,获得积分10
44秒前
科研通AI2S应助斯文的傲珊采纳,获得10
45秒前
无为完成签到 ,获得积分10
45秒前
fuguier完成签到 ,获得积分10
45秒前
无花果应助天真的嚓茶采纳,获得10
45秒前
花再完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226967
捐赠科研通 3041589
什么是DOI,文献DOI怎么找? 1669510
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734