已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting unseen antibodies’ neutralizability via adaptive graph neural networks

抗体 可解释性 计算机科学 表位 关系(数据库) 抗原 图形 免疫学 病毒学 生物 人工智能 理论计算机科学 数据挖掘
作者
Jie Zhang,Yishan Du,Pengfei Zhou,Jinru Ding,Shuai Xia,Qian Wang,Feiyang Chen,Mu Zhou,Xuemei Zhang,Wei-Feng Wang,Hongyan Wu,Lu Lu,Shaoting Zhang
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (11): 964-976 被引量:20
标识
DOI:10.1038/s42256-022-00553-w
摘要

Most natural and synthetic antibodies are 'unseen'. That is, the demonstration of their neutralization effects with any antigen requires laborious and costly wet-lab experiments. The existing methods that learn antibody representations from known antibody–antigen interactions are unsuitable for unseen antibodies owing to the absence of interaction instances. The DeepAAI method proposed herein learns unseen antibody representations by constructing two adaptive relation graphs among antibodies and antigens and applying Laplacian smoothing between unseen and seen antibodies' representations. Rather than using static protein descriptors, DeepAAI learns representations and relation graphs 'dynamically', optimized towards the downstream tasks of neutralization prediction and 50% inhibition concentration estimation. The performance of DeepAAI is demonstrated on human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, influenza and dengue. Moreover, the relation graphs have rich interpretability. The antibody relation graph implies similarity in antibody neutralization reactions, and the antigen relation graph indicates the relation among a virus's different variants. We accordingly recommend probable broad-spectrum antibodies against new variants of these viruses. The effects of novel antibodies are hard to predict owing to the complex interactions between antibodies and antigens. Zhang and colleagues use a graph-based method to learn a dynamic representation that allows for predictions of neutralization activity and demonstrate the method by recommending probable antibodies for human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, influenza and dengue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
梨老师关注了科研通微信公众号
7秒前
嘟嘟嘟嘟发布了新的文献求助10
8秒前
chali48完成签到,获得积分10
9秒前
wfrg完成签到 ,获得积分10
10秒前
13秒前
SS完成签到,获得积分0
17秒前
哈基米德完成签到,获得积分0
19秒前
hsh发布了新的文献求助10
20秒前
CreaJOE完成签到,获得积分10
21秒前
22秒前
英俊的铭应助冰雪痕采纳,获得10
23秒前
NexusExplorer应助CreaJOE采纳,获得10
25秒前
JamesPei应助Joeswith采纳,获得10
28秒前
桐桐应助Joeswith采纳,获得10
28秒前
29秒前
29秒前
123123完成签到 ,获得积分10
30秒前
pluto应助wang采纳,获得10
31秒前
edtaa发布了新的文献求助10
32秒前
天天快乐应助LLQ采纳,获得10
33秒前
嘟嘟嘟嘟发布了新的文献求助10
34秒前
温馨家园完成签到 ,获得积分10
36秒前
Garnieta完成签到,获得积分10
38秒前
jyy完成签到,获得积分10
38秒前
digger2023完成签到 ,获得积分10
39秒前
hsh发布了新的文献求助10
42秒前
共享精神应助嘟嘟嘟嘟采纳,获得10
44秒前
蛇從革应助斜玉采纳,获得30
46秒前
123完成签到 ,获得积分10
49秒前
52秒前
54秒前
55秒前
杜德爽发布了新的文献求助10
57秒前
栀尽夏完成签到,获得积分10
57秒前
我是老大应助科研通管家采纳,获得10
1分钟前
LLQ发布了新的文献求助10
1分钟前
1分钟前
hsh发布了新的文献求助10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4123993
求助须知:如何正确求助?哪些是违规求助? 3661911
关于积分的说明 11590071
捐赠科研通 3362451
什么是DOI,文献DOI怎么找? 1847535
邀请新用户注册赠送积分活动 911983
科研通“疑难数据库(出版商)”最低求助积分说明 827823