亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting unseen antibodies’ neutralizability via adaptive graph neural networks

抗体 可解释性 计算机科学 表位 关系(数据库) 抗原 图形 免疫学 病毒学 生物 人工智能 理论计算机科学 数据挖掘
作者
Jie Zhang,Yishan Du,Pengfei Zhou,Jinru Ding,Shuai Xia,Qian Wang,Feiyang Chen,Mu Zhou,Xuemei Zhang,Wei-Feng Wang,Hongyan Wu,Lu Lu,Shaoting Zhang
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (11): 964-976 被引量:20
标识
DOI:10.1038/s42256-022-00553-w
摘要

Most natural and synthetic antibodies are 'unseen'. That is, the demonstration of their neutralization effects with any antigen requires laborious and costly wet-lab experiments. The existing methods that learn antibody representations from known antibody–antigen interactions are unsuitable for unseen antibodies owing to the absence of interaction instances. The DeepAAI method proposed herein learns unseen antibody representations by constructing two adaptive relation graphs among antibodies and antigens and applying Laplacian smoothing between unseen and seen antibodies' representations. Rather than using static protein descriptors, DeepAAI learns representations and relation graphs 'dynamically', optimized towards the downstream tasks of neutralization prediction and 50% inhibition concentration estimation. The performance of DeepAAI is demonstrated on human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, influenza and dengue. Moreover, the relation graphs have rich interpretability. The antibody relation graph implies similarity in antibody neutralization reactions, and the antigen relation graph indicates the relation among a virus's different variants. We accordingly recommend probable broad-spectrum antibodies against new variants of these viruses. The effects of novel antibodies are hard to predict owing to the complex interactions between antibodies and antigens. Zhang and colleagues use a graph-based method to learn a dynamic representation that allows for predictions of neutralization activity and demonstrate the method by recommending probable antibodies for human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, influenza and dengue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助StonesKing采纳,获得10
4秒前
8秒前
12秒前
15秒前
CipherSage应助是一颗大树呀采纳,获得10
16秒前
Leon完成签到,获得积分0
19秒前
繁荣的心情完成签到,获得积分10
24秒前
求助完成签到,获得积分10
32秒前
lalala完成签到 ,获得积分10
38秒前
LizQAQ完成签到,获得积分10
54秒前
努力中的小鹿完成签到,获得积分20
57秒前
yoona完成签到 ,获得积分10
58秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
kento完成签到,获得积分0
1分钟前
1分钟前
lili完成签到,获得积分20
1分钟前
搞搞科研发布了新的文献求助10
1分钟前
千纸鹤完成签到 ,获得积分10
1分钟前
1分钟前
lili发布了新的文献求助10
1分钟前
王子娇完成签到 ,获得积分10
1分钟前
淡淡代云完成签到,获得积分10
2分钟前
王榴莲发布了新的文献求助10
2分钟前
朴素的山蝶完成签到 ,获得积分10
2分钟前
2分钟前
luster完成签到 ,获得积分10
2分钟前
NattyPoe完成签到,获得积分10
2分钟前
2分钟前
via发布了新的文献求助10
2分钟前
2分钟前
畅快的雪柳完成签到 ,获得积分10
2分钟前
沏碗麻花发布了新的文献求助20
2分钟前
淡淡代云发布了新的文献求助10
2分钟前
2分钟前
2分钟前
来碗豆腐完成签到 ,获得积分20
3分钟前
kento应助科研通管家采纳,获得200
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792443
求助须知:如何正确求助?哪些是违规求助? 3336701
关于积分的说明 10281905
捐赠科研通 3053438
什么是DOI,文献DOI怎么找? 1675609
邀请新用户注册赠送积分活动 803592
科研通“疑难数据库(出版商)”最低求助积分说明 761468