MUFusion: A general unsupervised image fusion network based on memory unit

计算机科学 显著性(神经科学) 融合 图像融合 图像(数学) 人工智能 融合规则 过程(计算) 基本事实 模式识别(心理学) 语言学 操作系统 哲学
作者
Chunyang Cheng,Tianyang Xu,Xiao‐Jun Wu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:92: 80-92 被引量:82
标识
DOI:10.1016/j.inffus.2022.11.010
摘要

Existing image fusion approaches are committed to using a single deep network to solve different image fusion problems, achieving promising performance in recent years. However, devoid of the ground-truth output, in these methods, only the appearance from source images can be exploited during the training process to generate the fused images, resulting in suboptimal solutions. To this end, we advocate a self-evolutionary training formula by introducing a novel memory unit architecture (MUFusion). In this unit, specifically, we utilize the intermediate fusion results obtained during the training process to further collaboratively supervise the fused image. In this way, our fusion results can not only learn from the original input images, but also benefit from the intermediate output of the network itself. Furthermore, an adaptive unified loss function is designed based on this memory unit, which is composed of two loss items, i.e., content loss and memory loss. In particular, the content loss is calculated based on the activity level maps of source images, which can constrain the output image to contain specific information. On the other hand, the memory loss is obtained based on the previous output of our model, which is utilized to force the network to yield fusion results with higher quality. Considering the handcrafted activity level maps cannot consistently reflect the accurate salience judgement, we put two adaptive weight items between them to prevent this degradation phenomenon. In general, our MUFusion can effectively handle a series of image fusion tasks, including infrared and visible image fusion, multi-focus image fusion, multi-exposure image fusion, and medical image fusion. Particularly, the source images are concatenated in the channel dimension. After that, a densely connected feature extraction network with two scales is used to extract the deep features of the source images. Following this, the fusion result is obtained by two feature reconstruction blocks with skip connections from the feature extraction network. Qualitative and quantitative experiments on 4 image fusion subtasks demonstrate the superiority of our MUFusion, compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhangXR发布了新的文献求助10
刚刚
1秒前
Damiao发布了新的文献求助10
1秒前
慌慌发布了新的文献求助10
1秒前
许甜甜鸭应助lizhiqian2024采纳,获得10
2秒前
汉堡包应助lizhiqian2024采纳,获得10
2秒前
Jasper应助积极一德采纳,获得10
2秒前
2秒前
爆米花应助jdjd采纳,获得10
3秒前
3秒前
3秒前
丘比特应助爱跳舞的拉丁采纳,获得10
5秒前
5秒前
CodeCraft应助南茶北暖采纳,获得30
5秒前
SYLH应助红花牌凯塞路采纳,获得10
5秒前
ArielXu应助sxyc5采纳,获得10
5秒前
汉堡包应助传统的夏之采纳,获得10
6秒前
6秒前
6秒前
CipherSage应助renpp822采纳,获得30
7秒前
7秒前
细心叫兽完成签到,获得积分10
8秒前
bkagyin应助优雅冬灵采纳,获得10
8秒前
喵喵喵完成签到,获得积分10
8秒前
霡霂发布了新的文献求助10
8秒前
8秒前
顺其自然_666888完成签到,获得积分10
10秒前
10秒前
斯文败类应助hanhan采纳,获得10
11秒前
乐乐应助idemipere采纳,获得10
11秒前
小二郎应助YY-Bubble采纳,获得30
11秒前
11秒前
慌慌完成签到,获得积分10
12秒前
12秒前
Jane发布了新的文献求助30
12秒前
12秒前
昀颂完成签到 ,获得积分10
13秒前
隐形曼青应助按揭采纳,获得10
15秒前
哲000完成签到 ,获得积分10
15秒前
清脆的土豆完成签到,获得积分0
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817975
求助须知:如何正确求助?哪些是违规求助? 3361163
关于积分的说明 10411894
捐赠科研通 3079381
什么是DOI,文献DOI怎么找? 1691165
邀请新用户注册赠送积分活动 814400
科研通“疑难数据库(出版商)”最低求助积分说明 768175