Fast screening method to determine metabolites of nitrofurans in chicken meat using partitioned dispersive liquid–liquid microextraction combined with HPLC/DAD

硝基呋喃 色谱法 重复性 分析物 化学 萃取(化学) 高效液相色谱法 检出限 水解 生物化学 生物 遗传学
作者
Girma Regassa Fayissa,Simiso Dube,Mathew Muzi Nindi
出处
期刊:Food Additives & Contaminants: Part A [Informa]
卷期号:40 (1): 56-66 被引量:4
标识
DOI:10.1080/19440049.2022.2136767
摘要

Methods have been developed for the hydrolysis and derivatisation of protein-bound metabolites of nitrofurans and for the extraction of 2-nitrobenzaldehyde derivatives of the metabolites from chicken meat. In this work, the time needed for hydrolysis and derivatisation was reduced from the conventional 16 h to 90 min. Based on partitioned dispersed liquid-liquid microextraction, a method for extracting 2-nitrobenzaldehyde derivatives of metabolites from crude chicken meat has been developed. Under the optimised experimental conditions, enrichment factors (EFs) ranging from 92.8 to 208.9 were obtained. The method was linear over the range of 10-600 µg kg-1 with determination coefficients (r2) between 0.9979 and 0.9996. Intraday and interday repeatability expressed as a percentage RSD, ranged from 2.2% to 11.2%, and 2.7% to 12.4%, respectively. LOD of 1.07-2.25 µg kg-1 and LOQ of 3.09-6.2 µg kg-1 were obtained. The proposed method was applied in the analysis of metabolites of nitrofurans in chicken meat obtained from farmers using them for their domestic consumption and proved free of the analytes. A recovery of 85.2-109.4% with a %RSD ranging between 3.4% and 13.7% was obtained at three spiking levels. The proposed method was successfully further applied for the analysis of target analytes in chicken meat samples purchased from different supermarkets around Roodeport, Gauteng (South Africa). There was no target analyte detected in the analysed samples. Therefore, the developed methods can be used for monitoring the corresponding metabolites of nitrofurans in chicken meat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
万能图书馆应助vicky采纳,获得10
1秒前
爱学习的华夫饼完成签到,获得积分10
1秒前
科研通AI6应助Katze采纳,获得10
2秒前
2秒前
啊啊啊发布了新的文献求助10
2秒前
2秒前
2秒前
ding应助HOME采纳,获得10
3秒前
Nabi发布了新的文献求助10
3秒前
3秒前
SciGPT应助hh采纳,获得10
4秒前
4秒前
4秒前
6秒前
林海之光发布了新的文献求助10
7秒前
拼搏的龙完成签到,获得积分10
7秒前
落后乞关注了科研通微信公众号
7秒前
二七发布了新的文献求助10
7秒前
一百发布了新的文献求助10
7秒前
成小调发布了新的文献求助10
9秒前
浮游应助玥越采纳,获得10
11秒前
why完成签到,获得积分10
11秒前
酷波er应助Nabi采纳,获得10
11秒前
子车茗应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
Hello应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
科目三应助黑猫警长采纳,获得10
11秒前
MchemG应助科研通管家采纳,获得10
12秒前
ML应助科研通管家采纳,获得10
12秒前
子车茗应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得30
12秒前
Ava应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553580
求助须知:如何正确求助?哪些是违规求助? 4638120
关于积分的说明 14652281
捐赠科研通 4579970
什么是DOI,文献DOI怎么找? 2512009
邀请新用户注册赠送积分活动 1486966
关于科研通互助平台的介绍 1457791