已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the Demand for Medical Care in Disaster-Affected Areas using the Minimum Data Set and Machine Learning

机器学习 医疗保健 计算机科学 最小数据集 人工智能 集合(抽象数据类型) 传染病(医学专业) 数据集 卫生用品 疾病 医学 护理部 疗养院 程序设计语言 经济 病理 经济增长
作者
Yutaka Igarashi,Tatsuhiko Kubo,Yoshiki Toyokuni,Shoji Yokobori,Yuichi Koido
出处
期刊:Prehospital and Disaster Medicine [Cambridge University Press]
卷期号:37 (S2): s108-s108
标识
DOI:10.1017/s1049023x22002072
摘要

Background/Introduction: The Minimum Data Set (MDS) has allowed governments of disaster-affected countries to collect, examine, and evaluate standardized medical data from Emergency Medical Teams in real-time. However, little study has been conducted on the use of MDS data to predict health care needs. Objectives: This research proposes an outlook on the use of machine learning and MDS data to predict the need for medical care in disaster-affected areas. Method/Description: The characteristics of the data collected by MDS and the optimal machine learning model were discussed. Results/Outcomes: The primary causes of disease after disasters are trauma (MDS Nos. 4–8), which frequently occurs immediately after a disaster, and infectious diseases (MDS Nos. 9–18), which can increase due to decreasing hygiene conditions. Furthermore, certain infectious diseases can spread quickly because of living in congested evacuation centers, and early detection is crucial. Therefore, predicting the need for medical care in a disaster area is complicated and requires a combination of many machine-learning models. Data-driven methods are mostly linear approaches and cannot capture the dynamics of infectious disease transmission. Additionally, statistical models depend heavily on assumptions, making real-time infection prediction challenging. Thus, deep learning is employed to model without losing the temporal component. Conclusion: Real-time prediction of health care needs using machine learning and MDS can be useful to policymakers by enabling them to better deploy and allocate health care resources, which is useful to patients and front-line health care providers. More detailed predictions for regions and diseases are also anticipated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简柠完成签到,获得积分10
1秒前
3秒前
chenwuhao完成签到 ,获得积分10
3秒前
妖九笙完成签到 ,获得积分10
5秒前
8秒前
羊村霸总懒大王完成签到 ,获得积分10
9秒前
华仔应助meeteryu采纳,获得20
9秒前
11秒前
hx发布了新的文献求助10
14秒前
qianqina发布了新的文献求助10
15秒前
flic应助霸气的仙人掌采纳,获得30
15秒前
16秒前
AishuangQi完成签到,获得积分10
16秒前
书文混四方完成签到 ,获得积分10
16秒前
17秒前
18秒前
小张完成签到 ,获得积分10
19秒前
20秒前
宇宇完成签到 ,获得积分10
21秒前
cfy完成签到,获得积分10
23秒前
LiXF完成签到,获得积分10
23秒前
Rita应助Nemo采纳,获得10
23秒前
BYGYHQ完成签到 ,获得积分10
24秒前
dmi发布了新的文献求助30
24秒前
丘比特应助qianqina采纳,获得10
24秒前
司纤户羽完成签到 ,获得积分10
24秒前
冷淡芝麻发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
香蕉觅云应助77采纳,获得30
27秒前
兆兆完成签到 ,获得积分10
30秒前
Moses完成签到,获得积分10
30秒前
mmyhn发布了新的文献求助10
30秒前
英俊的铭应助李响采纳,获得10
30秒前
山猪吃细糠完成签到 ,获得积分10
31秒前
深藏Blue发布了新的文献求助10
31秒前
31秒前
oo完成签到 ,获得积分10
32秒前
dmi完成签到,获得积分20
33秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386