Informing the SWAT model with remote sensing detected vegetation phenology for improved modeling of ecohydrological processes

环境科学 物候学 植被(病理学) 水文学(农业) 生态水文学 遥感 地质学 生态系统 生态学 医学 生物 病理 岩土工程
作者
Shouzhi Chen,Yongshuo H. Fu,Zhaofei Wu,Fanghua Hao,Zengchao Hao,Yahui Guo,Xiaojun Geng,Xiaoyan Li,Xuan Zhang,Jing Tang,Vijay P. Singh,Xuesong Zhang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:616: 128817-128817 被引量:53
标识
DOI:10.1016/j.jhydrol.2022.128817
摘要

The Soil and Water Assessment Tool (SWAT) model has been widely applied for simulating the water cycle and quantifying the influence of climate change and anthropogenic activities on hydrological processes. A major uncertainty of SWAT stems from the poor representation of vegetation dynamics due to the use of a simplistic vegetation growth and development module. Using long-term remote sensing-based phenological data, the SWAT model’s vegetation module was improved by adding a dynamic growth start date and the dynamic heat requirement for vegetation growth rather than using constant values. The new SWAT model was verified in the Han River basin, China, and found its performance was much improved in comparison with that of the original SWAT model. Specifically, the accuracy of the leaf area index (LAI) simulation improved notably (coefficient of determination (R2) increased by 0.193, Nash–Sutcliffe Efficiency (NSE) increased by 0.846, and percent bias decreased by 42.18 %), and that of runoff simulation improved modestly (R2 increased by 0.05 and NSE was similar). Additionally, it is found that the original SWAT model substantially underestimated evapotranspiration (Penman-Monteith method) in comparison with the new SWAT model (65.09 mm (or 22.17 %) for forests, 92.27 mm (or 32 %) for orchards, and 96.16 mm (or 36.4 %) for farmland), primarily due to the inaccurate representation of LAI dynamics. Our results suggest that an accurate representation of phenological dates in the vegetation growth module is important for improving the SWAT model performance in terms of estimating terrestrial water and energy balance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯真含双发布了新的文献求助10
刚刚
纯白色发布了新的文献求助10
刚刚
给我个二硫碘化钾完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
huxinshinn应助飲啖茶采纳,获得100
5秒前
科研通AI2S应助暮雪采纳,获得10
7秒前
10秒前
11秒前
毛毛虫发布了新的文献求助10
12秒前
科研废物完成签到 ,获得积分10
12秒前
所所应助紫气东来采纳,获得50
15秒前
少年锦时asd完成签到,获得积分10
16秒前
洛luo发布了新的文献求助10
17秒前
西因发布了新的文献求助10
17秒前
厐于晏完成签到,获得积分10
19秒前
ysy完成签到 ,获得积分10
21秒前
Bressanone完成签到,获得积分10
22秒前
22秒前
小巧思枫完成签到 ,获得积分10
24秒前
共享精神应助早早采纳,获得10
24秒前
24秒前
123456完成签到,获得积分10
27秒前
欢呼的访梦完成签到,获得积分10
28秒前
桐桐应助厐于晏采纳,获得10
28秒前
研友_VZG7GZ应助keyan采纳,获得10
29秒前
30秒前
蒋若风发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
所所应助缥缈幻柏采纳,获得10
32秒前
Zx_1993应助Amy采纳,获得60
32秒前
Lxx完成签到,获得积分10
33秒前
李倇仪发布了新的文献求助10
34秒前
lovekobe完成签到,获得积分10
34秒前
34秒前
Buxi完成签到,获得积分10
34秒前
紫气东来发布了新的文献求助50
35秒前
努力科研发布了新的文献求助30
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600839
求助须知:如何正确求助?哪些是违规求助? 4686362
关于积分的说明 14843382
捐赠科研通 4678240
什么是DOI,文献DOI怎么找? 2538963
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241