A systematic and critical review on development of machine learning based-ensemble models for prediction of adsorption process efficiency

集成学习 过程(计算) 计算机科学 吸附 机器学习 集合预报 人工智能 化学 操作系统 有机化学
作者
Elahe Abbasi,Mohammad Reza Alavi Moghaddam,Elaheh Kowsari
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:379: 134588-134588 被引量:23
标识
DOI:10.1016/j.jclepro.2022.134588
摘要

The development of machine learning-based ensemble models for the prediction of complex processes with non-linear nature (such as adsorption) has been remarkably advanced over recent years. As a result, having an informative vision of these models' progression, appears to be critical for better understanding and using them in applications such as adsorption modeling. This paper systematically and critically reviews 38 articles in the field of application of ensemble models for the prediction of adsorption process efficiency for pollutants' removal from aquatic solutions. Two aspects, including the adsorption process and ensemble models’ characteristics, are discussed in details. The type of adsorbate and adsorbent, as well as the system operation mode, are explored from the first point of view. The type of ensemble technique, software, input and output variables, dataset size and partitioning method, and performance metrics are all investigated in the ensemble model section. Based on discussed aspects and outcomes acquired from reviewed papers, some future research perspectives, including choosing model input variables from adsorbate properties, adsorbent characteristics, and adsorption condition parameters to increase the reliability of model predictions and also increasing dataset size to augment the accuracy of the ensemble models, are recommended for promoting next investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情干饭崽完成签到,获得积分10
刚刚
无算浮白发布了新的文献求助10
刚刚
wwho_O发布了新的文献求助10
刚刚
1秒前
小二郎应助liu采纳,获得10
1秒前
wyj0815完成签到,获得积分10
1秒前
2秒前
照度计发布了新的文献求助10
2秒前
知不道完成签到,获得积分10
2秒前
王子发布了新的文献求助10
3秒前
思源应助土拨鼠采纳,获得10
3秒前
雨夜星空发布了新的文献求助10
3秒前
taoliu发布了新的文献求助10
4秒前
自由山槐发布了新的文献求助30
4秒前
4秒前
huhu发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
慕知发布了新的文献求助10
7秒前
yiw发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助沐子采纳,获得10
8秒前
丫丫发布了新的文献求助10
8秒前
所所应助H0oZz采纳,获得10
8秒前
159完成签到,获得积分10
8秒前
SciGPT应助taoliu采纳,获得10
8秒前
9秒前
9秒前
9秒前
橙子发布了新的文献求助10
10秒前
10秒前
边贺发布了新的文献求助10
10秒前
Brian发布了新的文献求助10
11秒前
积极玲完成签到,获得积分10
11秒前
情怀应助lzj采纳,获得10
11秒前
xiongyuan完成签到,获得积分10
13秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790524
求助须知:如何正确求助?哪些是违规求助? 3335294
关于积分的说明 10274188
捐赠科研通 3051766
什么是DOI,文献DOI怎么找? 1674822
邀请新用户注册赠送积分活动 802870
科研通“疑难数据库(出版商)”最低求助积分说明 760956