Automated segmentation in planning-CT for breast cancer radiotherapy: A review of recent advances

放射治疗 医学 医学物理学 乳腺癌 放射科 分割 癌症 放射治疗计划 计算机科学 人工智能 内科学
作者
Zineb Smine,S. Poeta,Alex De Caluwé,Antoine Desmet,Cristina Garibaldi,Kévin Brou Boni,Hugo Levillain,Dirk Van Gestel,N. Reynaert,Jennifer Dhont
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:202: 110615-110615 被引量:1
标识
DOI:10.1016/j.radonc.2024.110615
摘要

Postoperative radiotherapy (RT) has been shown to effectively reduce disease recurrence and mortality in breast cancer (BC) treatment. A critical step in the planning workflow is the accurate delineation of clinical target volumes (CTV) and organs-at-risk (OAR). This literature review evaluates recent advancements in deep-learning (DL) and atlas-based auto-contouring techniques for CTVs and OARs in BC planning-CT images for RT. It examines their performance regarding geometrical and dosimetric accuracy, inter-observer variability, and time efficiency. Our findings indicate that both DL- and atlas-based methods generally show comparable performance across OARs and CTVs, with DL methods slightly outperforming in consistency and accuracy. Auto-segmentation of breast and most OARs achieved robust results in both segmentation quality and dosimetric planning. However, lymph node levels (LNLs) presented the greatest challenge in auto-segmentation with significant impact on dosimetric planning. The translation of these findings into clinical practice is limited by the geometric performance metrics and the lack of dose evaluation studies. Additionally, auto-contouring algorithms showed diverse structure sets, while training datasets varied in size, origin, patient positioning and imaging protocols, affecting model sensitivity. Guideline inconsistencies and varying definitions of ground truth led to substantial variability, suggesting a need for a reliable consensus training dataset. Finally, our review highlights the popularity of the U-Net architecture. In conclusion, while automated contouring has proven efficient for many OARs and the breast-CTV, further improvements are necessary in LNL delineation, dosimetric analysis, and consensus building.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
寒树发布了新的文献求助10
1秒前
1秒前
fengfeng发布了新的文献求助10
1秒前
斐嘿嘿发布了新的文献求助10
2秒前
张江泽发布了新的文献求助10
2秒前
朱文韬发布了新的文献求助10
2秒前
李马克发布了新的文献求助30
3秒前
治治治发布了新的文献求助10
3秒前
充电宝应助汎影采纳,获得10
3秒前
大海发布了新的文献求助10
4秒前
Neurodog完成签到,获得积分10
4秒前
5秒前
6秒前
上官若男应助寒树采纳,获得10
6秒前
6秒前
半夏微凉发布了新的文献求助10
7秒前
陪你闯荡发布了新的文献求助20
7秒前
科研通AI5应助半夏采纳,获得10
8秒前
yirenli完成签到,获得积分10
8秒前
欢佳欢发布了新的文献求助10
8秒前
vvA11应助ZLY采纳,获得10
8秒前
kavins凯旋完成签到,获得积分10
9秒前
邓晓霞发布了新的文献求助10
11秒前
今天又来搬砖啦完成签到,获得积分10
12秒前
桐桐应助科研dog采纳,获得10
13秒前
搜集达人应助Zoe采纳,获得10
13秒前
天天快乐应助张江泽采纳,获得10
14秒前
刘振鲁完成签到,获得积分10
14秒前
liyiren完成签到,获得积分10
14秒前
怪僻完成签到,获得积分10
16秒前
123完成签到,获得积分10
16秒前
乌克丽丽完成签到 ,获得积分10
16秒前
熊熊面包完成签到,获得积分10
16秒前
17秒前
18秒前
852应助乐观小之采纳,获得10
19秒前
19秒前
21秒前
寒暄half发布了新的文献求助10
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4195789
求助须知:如何正确求助?哪些是违规求助? 3731417
关于积分的说明 11752035
捐赠科研通 3406085
什么是DOI,文献DOI怎么找? 1868790
邀请新用户注册赠送积分活动 924975
科研通“疑难数据库(出版商)”最低求助积分说明 835577