Deformable Transformer and Spectral U-Net for Large-Scale Hyperspectral Image Semantic Segmentation

高光谱成像 计算机科学 人工智能 图像分割 分割 计算机视觉 变压器 比例(比率) 遥感 模式识别(心理学) 地质学 地图学 地理 工程类 电压 电气工程
作者
Tianjian Zhang,Ling Zhang,Zhaohui Xue,Hongjun Su
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 20227-20244 被引量:6
标识
DOI:10.1109/jstars.2024.3485239
摘要

Remote sensing semantic segmentation tasks aim to automatically extract land cover types by accurately classifying each pixel. However, large-scale hyperspectral remote sensing images possess rich spectral information, complex and diverse spatial distributions, significant scale variations, and a wide variety of land cover types with detailed features, which pose significant challenges for segmentation tasks. To overcome these challenges, this study introduces a U-shaped semantic segmentation network that combines global spectral attention and deformable Transformer for segmenting large-scale hyperspectral remote sensing images. First, convolution and global spectral attention are utilized to emphasize features with the richest spectral information, effectively extracting spectral characteristics. Second, deformable self-attention is employed to capture global-local information, addressing the complex scale and distribution of objects. Finally, deformable cross-attention is used to aggregate deep and shallow features, enabling comprehensive semantic information mining. Experiments conducted on a large-scale hyperspectral remote sensing dataset (WHU-OHS) demonstrate that: first, in different cities including Changchun, Shanghai, Guangzhou, and Karamay, DTSU-Net achieved the highest performance in terms of mIoU compared to the baseline methods, reaching 56.19%, 37.89%, 52.90%, and 63.54%, with an average improvement of 7.57% to 34.13%, respectively; second, module ablation experiments confirm the effectiveness of our proposed modules, and deformable Transformer significantly reduces training costs compared to conventional Transformers; third, our approach achieves the highest mIoU of 57.22% across the entire dataset, with a balanced trade-off between accuracy and parameter efficiency, demonstrating an improvement of 1.65% to 56.58% compared to the baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助630天天采纳,获得20
1秒前
1秒前
¥#¥-11完成签到,获得积分10
1秒前
寒冷念文完成签到,获得积分10
2秒前
Bingcai完成签到,获得积分10
3秒前
Jasper应助长樱采纳,获得10
3秒前
3秒前
3秒前
斯文败类应助玉襄采纳,获得10
4秒前
XRECP发布了新的文献求助10
4秒前
谢慧蕴完成签到,获得积分10
4秒前
富士山来信完成签到,获得积分10
4秒前
5秒前
峥嵘完成签到,获得积分10
6秒前
浮游应助海峰荣采纳,获得10
7秒前
7秒前
7秒前
华仔应助科研小能手采纳,获得10
8秒前
兔子发布了新的文献求助30
8秒前
chenqiumu应助研友_nVNBVn采纳,获得30
8秒前
木木发布了新的文献求助20
9秒前
kiki0808完成签到 ,获得积分10
9秒前
兔子完成签到,获得积分10
9秒前
10秒前
10秒前
科研通AI6应助guihai采纳,获得10
11秒前
沐晴发布了新的文献求助10
11秒前
寒冷念文发布了新的文献求助10
12秒前
寻359完成签到,获得积分10
12秒前
xs关闭了xs文献求助
12秒前
hml完成签到 ,获得积分10
12秒前
顺利毕业发布了新的文献求助10
12秒前
周晴发布了新的文献求助10
12秒前
14秒前
情怀应助xly采纳,获得10
14秒前
15秒前
15秒前
无辜丹翠发布了新的文献求助10
15秒前
future发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264034
求助须知:如何正确求助?哪些是违规求助? 4424379
关于积分的说明 13772854
捐赠科研通 4299447
什么是DOI,文献DOI怎么找? 2359095
邀请新用户注册赠送积分活动 1355361
关于科研通互助平台的介绍 1316624