TS-AI: A deep learning pipeline for multimodal subject-specific parcellation with task contrasts synthesis

人工智能 过度拟合 计算机科学 模式识别(心理学) 机器学习 深度学习 概化理论 任务(项目管理) 人工神经网络 心理学 发展心理学 经济 管理
作者
Chengyi Li,Yuheng Lu,Shan Yu,Yue Cui
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103297-103297 被引量:1
标识
DOI:10.1016/j.media.2024.103297
摘要

Accurate mapping of brain functional subregions at an individual level is crucial. Task-based functional MRI (tfMRI) captures subject-specific activation patterns during various functions and behaviors, facilitating the individual localization of functionally distinct subregions. However, acquiring high-quality tfMRI is time-consuming and resource-intensive in both scientific and clinical settings. The present study proposes a two-stage network model, TS-AI, to individualize an atlas on cortical surfaces through the prediction of tfMRI data. TS-AI first synthesizes a battery of task contrast maps for each individual by leveraging tract-wise anatomical connectivity and resting-state networks. These synthesized maps, along with feature maps of tract-wise anatomical connectivity and resting-state networks, are then fed into an end-to-end deep neural network to individualize an atlas. TS-AI enables the synthesized task contrast maps to be used in individual parcellation without the acquisition of actual task fMRI scans. In addition, a novel feature consistency loss is designed to assign vertices with similar features to the same parcel, which increases individual specificity and mitigates overfitting risks caused by the absence of individual parcellation ground truth. The individualized parcellations were validated by assessing test-retest reliability, homogeneity, and cognitive behavior prediction using diverse reference atlases and datasets, demonstrating the superior performance and generalizability of TS-AI. Sensitivity analysis yielded insights into region-specific features influencing individual variation in functional regionalization. Additionally, TS-AI identified accelerated shrinkage in the medial temporal and cingulate parcels during the progression of Alzheimer's disease, suggesting its potential in clinical research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳绿柳完成签到,获得积分10
刚刚
柳绿柳发布了新的文献求助10
3秒前
小达发布了新的文献求助10
3秒前
5秒前
7秒前
lzzzz完成签到,获得积分10
9秒前
日出发布了新的文献求助10
10秒前
10秒前
科研通AI5应助张祖伦采纳,获得10
10秒前
呆呆的豆豆兵完成签到 ,获得积分10
11秒前
追寻夏烟完成签到 ,获得积分10
11秒前
Kirito应助旺仔小秃头采纳,获得10
12秒前
李爱国应助摆烂采纳,获得10
13秒前
乐乐应助夏夏采纳,获得10
14秒前
流云发布了新的文献求助10
15秒前
16秒前
11完成签到,获得积分20
17秒前
xx发布了新的文献求助10
17秒前
18秒前
BTW完成签到,获得积分10
18秒前
Timon完成签到,获得积分10
18秒前
科研通AI5应助深情的迎海采纳,获得30
19秒前
20秒前
20秒前
sss发布了新的文献求助10
22秒前
从容的雨灵完成签到,获得积分10
22秒前
cdercder应助xx采纳,获得10
23秒前
23秒前
bellapp完成签到 ,获得积分10
24秒前
add发布了新的文献求助10
24秒前
科研通AI5应助热心的薯片采纳,获得10
24秒前
落寞醉香发布了新的文献求助10
25秒前
25秒前
as9988776654完成签到,获得积分10
26秒前
27秒前
6959fuy发布了新的文献求助10
28秒前
29秒前
旺仔小秃头完成签到,获得积分10
30秒前
cc完成签到 ,获得积分10
30秒前
xx完成签到,获得积分10
31秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845874
求助须知:如何正确求助?哪些是违规求助? 3388228
关于积分的说明 10552145
捐赠科研通 3108835
什么是DOI,文献DOI怎么找? 1713137
邀请新用户注册赠送积分活动 824593
科研通“疑难数据库(出版商)”最低求助积分说明 774927