已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Study on detection of pesticide residues in tobacco based on hyperspectral imaging technology

高光谱成像 支持向量机 预处理器 计算机科学 人工智能 模式识别(心理学)
作者
Min Liang,Sheng Wang,Yu Lin,Caixia Li,Liang Zhang,Yaxi Liu
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1459886
摘要

Introduction Tobacco is a critical economic crop, yet its cultivation heavily relies on chemical pesticides, posing health risks to consumers, therefore, monitoring pesticide residues in tobacco is conducive to ensuring food safety. However, most current research on pesticide residue detection in tobacco relies on traditional chemical methods, which cannot meet the requirements for real-time and rapid detection. Methods This study introduces an advanced method that combines hyperspectral imaging (HSI) technology with machine learning algorithms. Firstly, a hyperspectral imager was used to obtain spectral data of tobacco samples, and a variety of spectral pre-processing technologies such as mean centralization (MC), trend correction (TC), and wavelet transform (WT), as well as feature extraction methods such as competitive adaptive reweighted sampling (CARS) and least angle regression (LAR) were used to process the spectral data, and then, grid search algorithm (GSA) is used to optimize the support sector machine (SVM). Results The optimized MC-LAR-SVM model achieved a pesticide classification accuracy of 84.1%, which was 9.5% higher than the original data model. The accuracy of the WT-TC-CARS-GSA-SVM model in the fenvalerate concentration classification experiment was as high as 91.8 %, and it also had excellent performance in other metrics. Compared with the model based on the original data, the accuracy, precision, recall, and F1-score are improved by 8.3 %, 8.2 %, 7.5 %, and 0.08, respectively. Discussion The results show that combining spectral preprocessing and feature extraction algorithms with machine learning models can significantly enhance the performance of pesticide residue detection models and provide robust, efficient, and accurate solutions for food safety monitoring. This study provides a new technical means for the detection of pesticide residues in tobacco, which is of great significance for improving the efficiency and accuracy of food safety detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
外向豁发布了新的文献求助10
刚刚
普鲁卡因发布了新的文献求助10
1秒前
Nora发布了新的文献求助10
1秒前
小葡萄完成签到 ,获得积分10
2秒前
雪白的听寒完成签到 ,获得积分10
2秒前
2秒前
wyt完成签到,获得积分10
3秒前
3秒前
killa完成签到 ,获得积分10
5秒前
自然的初丹完成签到,获得积分10
5秒前
6秒前
7秒前
一个大帅哥完成签到,获得积分10
7秒前
wanci应助CFJ采纳,获得10
7秒前
Eho发布了新的文献求助10
7秒前
Archy发布了新的文献求助10
8秒前
丰富采波完成签到 ,获得积分10
8秒前
哥谭小怪兽完成签到,获得积分10
9秒前
12秒前
Akim应助lin采纳,获得10
13秒前
13秒前
Eho完成签到,获得积分10
17秒前
阿童木完成签到 ,获得积分10
17秒前
外向豁完成签到,获得积分10
18秒前
normankasimodo完成签到 ,获得积分10
19秒前
19秒前
完美大神完成签到 ,获得积分10
19秒前
Dr.Who发布了新的文献求助10
20秒前
21秒前
CFJ发布了新的文献求助10
22秒前
八轩驳回了iNk应助
23秒前
24秒前
25秒前
希望天下0贩的0应助一双采纳,获得10
25秒前
FashionBoy应助雪sung采纳,获得10
27秒前
Paul111完成签到,获得积分10
27秒前
BA1发布了新的文献求助10
29秒前
浪客完成签到 ,获得积分10
29秒前
普鲁卡因发布了新的文献求助10
30秒前
31秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819631
求助须知:如何正确求助?哪些是违规求助? 3362627
关于积分的说明 10417782
捐赠科研通 3080775
什么是DOI,文献DOI怎么找? 1694763
邀请新用户注册赠送积分活动 814781
科研通“疑难数据库(出版商)”最低求助积分说明 768462